当前位置首页 > 办公文档 > 解决方案
搜柄,搜必应! 快速导航 | 使用教程  [会员中心]

光耦常见的几种连接方式及其工作原理

文档格式:DOCX| 4 页|大小 351.64KB|积分 20|2022-11-11 发布|文档ID:168584948
第1页
下载文档到电脑,查找使用更方便 还剩页未读,继续阅读>>
1 / 4
此文档下载收益归作者所有 下载文档
  • 版权提示
  • 文本预览
  • 常见问题
  • 在一般的隔离电源中,光耦隔离反馈是一种简单、低成本的方式但对于光耦反馈的各种连接方式及其区 别,目前尚未见到比较深入的研究而且在很多场合下,由于对光耦的工作原理理解不够深入,光耦接法 混乱,往往导致电路不能正常工作本研究将详细分析光耦工作原理,并针对光耦反馈的几种典型接法加 以对比研究1常见的几种连接方式及其工作原理常用于反馈的光耦型号有TLP521、PC817等这里以TLP521为例,介绍这类光耦的特性TLP521的原边相当于一个发光二极管,原边电流If越大,光强越强,副边三极管的电流Ic越大副边 三极管电流Ic与原边二极管电流If的比值称为光耦的电流放大系数,该系数随温度变化而变化,且受温度 影响较大作反馈用的光耦正是利用“原边电流变化将导致副边电流变化”来实现反馈,因此在环境温度变 化剧烈的场合,由于放大系数的温漂比较大,应尽量不通过光耦实现反馈此外,使用这类光耦必须注意 设计外围参数,使其工作在比较宽的线性带内,否则电路对运行参数的敏感度太强,不利于电路的稳定工 作通常选择TL431结合TLP521进行反馈这时,TL431的工作原理相当于一个内部基准为2.5 V的电压 误差放大器,所以在其1脚与3脚之间,要接补偿网络。

    常见的光耦反馈第1种接法,如图1所示图中,Vo为输出电压,Vd为芯片的供电电压com信号接 芯片的误差放大器输出脚,或者把PWM芯片(如UC3525)的内部电压误差放大器接成同相放大器形式, com信号则接到其对应的同相端引脚注意左边的地为输出电压地,右边的地为芯片供电电压地,两者之 间用光耦隔离图1所示接法的工作原理如下:当输出电压升高时,TL431的1脚(相当于电压误差放大器的反向输入端)电压上升,3脚(相当于电压误差放大器的输出脚)电压下降,光耦TLP521的原边电流If增大,光耦的另一端输出电流Ic增大,电阻R4上的电压降增大,com引脚电压下降,占空比减小,输出电压减小;反之,当输出电压降低时,调节过程类似常见的第2种接法,如图2所示与第1种接法不同的是,该接法中光耦的第4脚直接接到芯片的误差 放大器输出端,而芯片内部的电压误差放大器必须接成同相端电位高于反相端电位的形式,利用运放的一 种特性—— 当运放输出电流过大(超过运放电流输出能力)时,运放的输出电压值将下降,输出电流越大, 输出电压下降越多因此,采用这种接法的电路,一定要把PWM芯片的误差放大器的两个输入引脚接到 固定电位上,且必须是同向端电位高于反向端电位,使误差放大器初始输出电压为高。

    團1光耦反犧弟債种接洼图Z光耦反竣的第2种接梏图2所示接法的工作原理是:当输出电压升高时,原边电流If增大,输出电流Ic增大,由于Ic已经超过了电压误差放大器的电流输出能力,com脚电压下降,占空比减小,输出电压减小;反之,当输出电压下降时,调节过程类似常见的第3种接法,如图3所示与图1基本相似,不同之处在于图3中多了一个电阻R6,该电阻的作用是对TL431额外注入一个电流,避免TL431因注入电流过小而不能正常工作实际上如适当选取电阻值R3,电阻R6可以省略调节过程基本上同图1接法一致常见的第4种接法,如图4所示该接法与第2种接法类似,区别在于com端与光耦第4脚之间多接了一个电阻R4,其作用与第3种接法中的R6 一致,其工作原理基本同接法2Tf?52Jcom图3赴耦反熾的第3种接廉图4光黑反愦的第4禅接法2各种接法的比较在比较之前,需要对实际的光耦TLP521的几个特性曲线作一下分析首先是Ic-Vce曲线,如图5,图6所示0 02 皿日占Oft I卫12 1.4图5 TLP321的■一%曲爆團点TLM21的人曲銭由图5、图6可知,当f小于5 mA时,f的微小变化都将引起Ic与Vce的剧烈变化,光耦的输出特性曲线平缓。

    这时如果将光耦作为电源反馈网络的一部分,其传递函数增益非常大对于整个系统来说,一个非常高的增益容易引起系统不稳定,所以将光耦的静态工作点设置在电流If小于5 mA是不恰当的,设置为5〜10 mA较恰当此外,还需要分析光耦的Ic-If曲线,如图7所示由图7可以看出,在电流If小于10 mA时,Ic-If基本不变,而在电流If大于10 mA之后,光耦开始趋向饱和,Ic-If的值随着If的增大而减小对于一个电源系统来说,如果环路的增益是变化的,则将可能导致不稳定,所以将静态工作点设置在If过大处(从而输出特性容易饱和),也是不合理的需要说明的是,Ic-If曲线是随温度变化的,但是温度变化所影响的是在某一固定If值下的Ic值,对Ic-If比值基本无影响,曲线形状仍然同图7,只是温度升高,曲线整体下移,这个特性从Ic-Ta曲线(如图8所示)中可以看出I-I5V 一-“ KV*kdHlineal—r li if , a i ■ ri ■ mb ■I-fl * 三土^^ M3_ nA 西 ⑴ I■ H ■■o.w□ 03TLF521的斗-®曲城由图8可以看出,在If大于5 mA时,Ic-Ta曲线基本上是互相平行的。

    根据上述分析,以下针对不同的典型接法,对比其特性以及适用范围本研究以实际的隔离半桥辅助电 源及反激式电源为例说明第1种接法中,接到电压误差放大器输出端的电压是外部电压经电阻R4降压之后得到,不受电压误差 放大器电流输出能力影响,光耦的工作点选取可以通过其外接电阻随意调节按照前面的分析,令电流If的静态工作点值大约为10 mA,对应的光耦工作温度在0〜1OO°C变化,值 在20〜15 mA之间一般PWM芯片的三角波幅值大小不超过3 V,由此选定电阻R4的大小为670Q,并 同时确定TL431的3脚电压的静态工作点值为12 V,那么可以选定电阻R3的值为560Q电阻R1与R2 的值容易选取,这里取为27 k与4.7 k电阻R5与电容C1为PI补偿,这里取为3 k与10 nF实验中,半桥辅助电源输出负载为控制板上的各类控制芯片,加上多路输出中各路的死负载,最后的实 际功率大约为30 w实际测得的光耦4脚电压(此电压与芯片三角波相比较,从而决定驱动占空比)波形, 如图9所示对应的驱动信号波形,如图10所示图10的驱动波形有负电压部分,是由于上、下管的驱动绕在一个驱动磁环上的缘故可以看出,驱动信号的占空比比较大,大约为0.7。

    光詢电压波懸 圏半桥不管的駆动連理对于第2种接法,一般芯片内部的电压误差放大器,其最大电流输出能力为3 mA左右,超过这个电流 值,误差放大器输出的最高电压将下降所以,该接法中,如果电源稳态占空比较大,那么电流Ic比较小, 其值可能仅略大于3 mA,对应图7,Ib为2 mA左右由图6可知,lb值较小时,微小的Ib变化将引起 Ic剧烈变化,光耦的增益非常大,这将导致闭环网络不容易稳定而如果电源稳态占空比比较小,光耦的 4脚电压比较小,对应电压误差放大器的输出电流较大,也就是Ic比较大(远大于3 mA),则对应的Ib也比较大,同样对应于图6,当lb值较大时,对应的光耦增益比较适中,闭环网络比较容易稳定同样,对于上面的半桥辅助电源电路,用接法2代替接法1,闭环不稳定,用示波器观察光耦4脚电压波形,有明显的振荡光耦的4脚输出电压(对应于UC3525的误差放大器输出脚电压),波形如图11所示,可发现明显的振荡这是由于这个半桥电源稳态占空比比较大,按接法2则光耦增益大,系统不稳定而出现振荡8B11光輯的4脾输出电廉实际上,第2种接法在反激电路中比较常见,这是由于反激电路一般都出于效率考虑,电路通常工作于断续模式,驱动占空比比较小,对应光耦电流Ic比较大,参考以上分析可知,闭环环路也比较容易稳定。

    以下是另外一个实验反激电路,工作在断续模式,实际测得其光耦4脚电压波形,如图12所示实际测得的驱动信号波形,如图13所示,占空比约为0.2图M反激电歸光攝4脚电压波理圉左3反激电路驱动信号 波旌因此,在光耦反馈设计中,除了要根据光耦的特性参数来设置其外围参数外,还应该知道,不同占空比下对反馈方式的选取也是有限制的反馈方式1、3适用于任何占空比情况,而反馈方式2、4比较适合于在占空比比较小的场合使用3结束语本研究列举了4种典型光耦反馈接法,分析了各种接法下光耦反馈的原理以及各种限制因素,对比了各种接法的不同点通过实际半桥和反激电路测试,验证了电路工作的占空比对反馈方式选取的限制最后对光耦反馈进行总结,对今后的光耦反馈设计具有一定的参考价值。

    点击阅读更多内容
    卖家[上传人]:suijia
    资质:实名认证