傅里叶变换和傅里叶级数地收敛问地训练题目

1、傅里叶变换和傅里叶级数的收敛问题由于傅里叶级数是一个无穷级数,因而存在收敛问题这包含两方面的意思: 是否任何周期信号都可以表示为傅里叶级数;如果一个信号能够表示为傅里叶级 数,是否对任何t值级数都收敛于原来的信号关于傅里叶级数的收敛,有两组 稍有不同的条件第一组条件:如果周期信号xQ在一个周期内平方可积,即T0x (t )2dt则其傅里叶级数表达式一定存在第二组条件,与第一组条件稍有不同,就是狄里赫利条件,它包括以下三点(1) 在任何周期内,x必须绝对可积,即j x(t )dt < gT0(2) 在任何周期内,x(t)只有有限个极值点,且在极值点处的级值为有限值3) 在任何有限区间内,x(t)只有有限个间断点,且在这些不连续点处,x(t) 为有限值傅里叶变换的收敛问题也有两组类似的条件:第一组条件:如果xQ平方可积,即j g |x(t)2dt < g—g则x(t)的傅里叶变换存在满足上式可以保证X 6)为有限值第二组条件也称为狄里赫利条件,这就是:(1) x(t)绝对可积,即g—g 吉布斯现象: 当简单地把信号频谱截断时,相当于给信号频谱加上了一个矩形窗口函数, 正是由于矩形窗口函数的时域特性导致了在间断点处的吉布斯现象的产生2、周期序列的傅里叶级数展开和傅里叶变换之间的问题假定xQ是一个长度为N的有限长序列,将xQ以N为周期延拓而成的周期序列为X(n),则有X(n )=区 x(n - rN )R = S或表示为X(n)= x((n))于是X(n)与x(n)的关系表示为:NX(n )= x((n ))Nx(n)= x(n)R (n)N将X (n )表示为离散时间傅里叶级数有:X(n )= 1 艺 X (k )・W -KnNNn=0X (k )= 2 X(n )・ WknNn=0其中乂 G)是傅里叶级数的系数,这样做的目的是使其表达形式与离散时间傅里 叶变换的形式相类似如果将乂G)的主值周期记为X(k), 0 < k < N-1,由于以 上两式中的求和范围均取为区间0〜N-1,在次区间内X(n)= x(n),因此可以得到:X(k)= 2x(n)W kn, 0 显然,DFT与 DFS 之间存在以下关系:X〜 (k)= X ((k))NX (k )= X〜 (k )R (k )N3、频率分辨率的问题若信号最高频率为 f ,按抽样定理,抽样频率应满足 hs也就是抽样间隔为 T 满足11 h要想兼顾高频容量 f 与频率分辨力 F ,即一个性能提高而另一个性能不变 h0(或也得以提高)的惟一办法就是增加记录长度的点数N,即要满足N f、2fFF00这个公式是未采用任何特殊数据处理(例如加窗处理)的情况下,为实现基 本 DFT 算法所必须满足的最低条件如果加窗处理,相当于时域相乘,则频域 卷积,必然加宽频谱分量,频率分辨力就可能变坏,为了保证频率分辨力不变, 则须增加记录长度,也就是增加数据长度T04、MATLAB 的图示说明:有效观察时间与补零后的 DFT 之间的关系,以及与 DTFT 之间的关系对 8 点正弦离散序列求 8 点、32 点和 64 点 DFT ,观察频域变化(分别用绿 黄、红色表示)结果:矩形窗序列后补零的时、频域示意图从图中可以看出:序列后补零可以降低栅栏效应;信号频谱的形状只取决于 时域信号,与补零个数无关补零并不能提高频谱分辨率,因为频谱分辨率只与 时域数据的有效长度有关DTFT与DFT (或DFS )的关系:DFT时域序列为周期序列,周期为N;频 域序列也是周期序列,周期也是 N 点当 N 不断增大时,频域包络不变,但谱 线变密;显然,N时,时域序列变为非周期序列,频域为连续的频谱,即 变化为 DTFT。 5、教材 《信号与线性系统》,阎鸿森、王新凤、田惠生编,西安交通大学出版社 《数字信号处理教程》,程佩青编,清华大学出版社(后附连续信号傅里叶变换的DFT近似计算)傅里叶变换的 DFT 近似计算连续时间非周期信号x(t)的傅里叶变换对为8 x(t \-jotdt—8S ” X(41)(2)用 DFT 方法计算这一对变换的方法如下:(1)将x(t)在t轴上等间隔(宽度为T)分段,每一段用一个矩形脉冲代替,脉冲的幅度为其起始点的抽样值x(t) = x(nT )= x(n),然后把所有矩形脉冲的面积相加由于t=nTt T nTdt t T (dt =(n + 1)T — nT)J8 dt T 艺 T—8 n = —8则得频谱密度X (j°)=J +8x(t丄-jddt的近似值为—8X (j%艺 x(nT )• e - jQnT T—8(3)⑵将序列x(n)= x(nT)截断成从t = 0开始长度为[的有限长序列,包含有N个抽样(即时域取N个样点),则上式成为X (j%T 艺 x(nT ) • e - jQnTn=0(4)由于时域抽样,抽样频率为f =1T,则频域产生以f为周期的周期延拓,如果频域s s是限带信号,则可能不产生混叠,成为连续周期频谱序列,频域周期为f = 1T (即时域的 s抽样频率)。 3)为了数值计算,再频域上也要离散化(抽样)即在频域的一个周期(f )中也分s成N段,即取N个样点f =NF,每个样点间的间隔为F频域抽样,那么频域的积分 s 0 0式(2)式就变成求和式,而时域就得到原已截断的离散时间序列的周期延拓序列,其时域周期为T = 1 F0 0 0d (k + lb — k0 0 0卜d°T—g—=NTQ 二 2兀F00各参量的关系为又则1小2兀 c 小 F 小 T 2兀Q T = Q - — = Q - = 2兀・一o = 2兀• 一o = 2兀• = -0 0 f 0 Q Q f T Ns s s s 0这样,经过上面三个步骤后,时域、频域都是离散周期的序列,推导如下: 第 1 ,2 两步:时域抽样、截断(5)(6)X(jQ)u 园x(nT) • e — jQnT • Tn=0x(nT )q JQ sX (jQ)・ejQnTdQ2兀0第3 步:频域抽样,得到X (jkQ )沁 T园 x(nT)• e-丿也严= T 园 x(n )• e -煮nk = T • DFT lx(n )]n =0 n=0x(nT )uQ0 艺X(jkQ )• ejkQ严 2兀 0k=0=F0 艺 X (jkQ °〉鬥k=0=F • N •—艺 X (jkQ )• ejNnk0 N 0k=0=f •丄艺X(jkQ )• ejNnks N 0k=0=f • IDFT [x (jkQ )] s0X(jkQ )=X(jQ) 〜T • DFT tx(n)] ⑺0 lQ=kQ 0x(n)= xQ 沁丄• IDFT[X (jkQ )] ⑻t=nT T 0这就是从离散傅里叶变换法求连续非周期信号的傅里叶变换的抽样值的方法。 由X(jkQ )及x(n)的上两个近似式求连续的X(jQ)及x(t)的方法,则可分别用频域抽样 0定理的插值公式和时域抽样定理的插值公式求得。