人教版八年级下册数学期末检测卷附答案

人 教 版 数 学 八 年 级 下 学 期期 末 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.下列图案中,既是轴对称图形又是中心对称图形的是( )A. B. C. D. 2.若一个多边形的内角和是外角和的5倍,则这个多边形的边数是( )A. 12 B. 10 C. 8 D. 113.若x<y,则下列式子不成立是 ( )A. x-1<y-1 B. C. x+3<y+3 D. -2x<-2y4.下列因式分解正确的是( )A. x3﹣x=x(x2﹣1) B. x2+y2=(x+y)(x﹣y)C. (a+4)(a﹣4)=a2﹣16 D. m2+4m+4=(m+2)25.一元二次方程的解是( )A 0 B. 4 C. 0或4 D. 0或-46.下列说法中错误的是( )A. “买一张彩票中奖”发生的概率是0B. “软木塞沉入水底”发生的概率是0C. “太阳东升西落”发生的概率是1D. “投掷一枚骰子点数为8”是确定事件7.如果一个等腰三角形的两边长为4、9,则它的周长为( )A. 17 B. 22 C. 17或22 D. 无法计算8.在□ABCD中,O是AC、BD的交点,过点O 与AC垂直的直线交边AD于点E,若□ABCD的周长为22cm,则△CDE的周长为( ).A. 8cm B. 10cm C. 11cm D. 12cm9.某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意列得方程为( )A. B. C. D. 10.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB′交CD于点E,若AB=3,则△AEC的面积为( )A. 3 B. 1.5 C. 2 D. 二.填空题11.若式子有意义,则x的取值范围是_____.12.多项式x2+mx+5因式分解得(x+5)(x+n),则m=_____,n=_____.13.若一元二次方程ax2﹣bx﹣2019=0有一个根为x=﹣1,则a+b=_____.14.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3,则△ABC的周长是_______.三.解答题15.(1)解不等式组:;(2)因式分解:(x﹣2)(x﹣8)+8;(3)解方程:+=;(4)解方程:(2x﹣1)2=3﹣6x.16.先化简,再求值:,其中x是不等式组的整数解.17.某校在一次大课间活动中,采用了四种活动形式:A:跑步;B:跳绳;C:做操;D:游戏,全校学生都选择了一种形式参与活动,小明对同学们选择的活动形式进行了随机抽样调查,并绘制了不完整的两幅统计图,结合统计图,回答下列问题:(1)本次调查学生共 人,并将条形图补充完整;(2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?(3)学校在每班A、B、C、D四种活动形式中,随机抽取两种开展活动,求每班抽取两种形式恰好是“做操”和“跳绳”的概率.18.已知关于x的方程x2-2(k-1)x+k2 =0有两个实数根x1.x2.(1)求实 数k的取值范围;(2)若(x1+1)(x2+1)=2,试求k的值.19.如图,已知△ABC三个顶点的坐标分别是A(﹣3,1),B(﹣1,﹣1),C(2,2).(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1,B1,C1的坐标;(2)画出△ABC绕点B逆时针旋转90所得到的△A2B2C2,并求出S.20.已知:点A、C分别是∠B的两条边上的点,点D、E分别是直线BA、BC上的点,直线AE、CD相交于点P.(1)点D、E分别在线段BA、BC上;①若∠B=60(如图1),且AD=BE,BD=CE,则∠APD的度数为 ;②若∠B=90(如图2),且AD=BC,BD=CE,求∠APD度数;(2)如图3,点D、E分别在线段AB、BC的延长线上,若∠B=90,AD=BC,∠APD=45,求证:BD=CE.四.填空题21.已知,,则2x3y+4x2y2+2xy3=_________.22.若关于x分式方程﹣=1无解,则m的值为_____.23.已知关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,若x1,x2满足3x1=|x2|+2,则m的值为_____24.在平面直角坐标系xOy中,点A、B分别在x轴、y轴的正半轴上运动,点M为线段AB的中点.点D、E分别在x轴、y轴的负半轴上运动,且DE=AB=10.以DE为边在第三象限内作正方形DGFE,则线段MG长度的最大值为_____.25.如图,已知边长为4的菱形ABCD中,AC=BC,E,F分别为AB,AD边上的动点,满足BE=AF,连接EF交AC于点G,CE、CF分别交BD与点M,N,给出下列结论:①∠AFC=∠AGE;②EF=BE+DF;③△ECF面积的最小值为3,④若AF=2,则BM=MN=DN;⑤若AF=1,则EF=3FG;其中所有正确结论的序号是_____.五.解答题26.某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?27.(如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点 M处,点C落在点N处,MN与CD交于点P, 连接EP.⑴如图②,若M为AD边的中点,①△AEM的周长=_________cm;②求证:EP=AE+DP;⑵随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.28.矩形ABCO中,O(0,0),C(0,3),A(a,0),(a≥3),以A为旋转中心顺时针旋转矩形ABCO得到矩形AFED.(1)如图1,当点D落在边BC上时,求BD的长(用a的式子表示);(2)如图2,当a=3时,矩形AFED的对角线AE交矩形ABCO的边BC于点G,连结CE,若△CGE是等腰三角形,求直线BE的解析式;(3)如图3,矩形ABCO的对称中心为点P,当P,B关于AD对称时,求出a的值,此时在x轴、y轴上是否分别存在M,N使得四边形EFMN为平行四边形,若存在直接写出M,N坐标,不存在说明理由.答案与解析一.选择题(共10小题)1.下列图案中,既是轴对称图形又是中心对称图形的是( )A. B. C. D. 【答案】B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.若一个多边形的内角和是外角和的5倍,则这个多边形的边数是( )A. 12 B. 10 C. 8 D. 11【答案】A【解析】【分析】根据多边形的内角和公式(n-2)•180与外角和定理列出方程,然后求解即可.【详解】设这个多边形是n边形,根据题意得,(n﹣2)•180=5360,解得n=12.故选:A.【点睛】本题考查了多边形的内角和公式与外角和定理,熟练掌握多边形的内角和公式与外角和定理是解题的关键.3.若x<y,则下列式子不成立的是 ( )A. x-1<y-1 B. C. x+3<y+3 D. -2x<-2y【答案】D【解析】【分析】根据不等式的性质逐项分析即可.【详解】A. ∵ x<y,∴ x-1<y-1,故成立;B. ∵ x<y,∴ ,故成立;C. ∵ x<y,∴ x+3<y+3,故成立;D. ∵ x<y,∴ -2x>-2y,故不成立;故选D.故选D.【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.4.下列因式分解正确的是( )A. x3﹣x=x(x2﹣1) B. x2+y2=(x+y)(x﹣y)C. (a+4)(a﹣4)=a2﹣16 D. m2+4m+4=(m+2)2【答案】D【解析】【分析】逐项分解因式,即可作出判断.【详解】A、原式=x(x2﹣1)=x(x+1)(x﹣1),不符合题意;B、原式不能分解,不符合题意;C、原式不是分解因式,不符合题意;D、原式=(m+2)2,符合题意,故选:D.【点睛】此题主要考查了提公因式法,以及公式法在因式分解中的应用,要熟练掌握.5.一元二次方程的解是( )A. 0 B. 4 C. 0或4 D. 0或-4【答案】C【解析】【分析】对左边进行因式分解,得x(x-4)=0,进而用因式分解法解答.【详解】解:因式分解得,x(x-4)=0,∴x=0或x-4=0,∴x=0或x=4.故选C.【点睛】本题考查了用因式分解法解一元二次方程,因式分解法是解一元二次方程的一种简单方法.但在解决类似本题的题目时,往往容易直接约去一个x,而造成漏解.6.下列说法中错误的是( )A. “买一张彩票中奖”发生的概率是0B. “软木塞沉入水底”发生的概率是0C. “太阳东升西落”发生的概率是1D. “投掷一枚骰子点数为8”是确定事件【答案】A【解析】【分析】直接利用概率的意义以及事件的确定方法分别分析得出答案.【详解】A、“买一张彩票中奖”发生的概率是0,错误,符合题意;B、“软木塞沉入水底”发生的概率是0,正确,不合题意;C、“太阳东升西落”发生的概率是1,正确,不合题意;D、“投掷一枚骰子点数为8”是确定事件,正确,不合题意;故选:A.【点睛】此题主要考查了概率的意义以及事件的确定方法,解题关键是正确理解概率的意义.7.如果一个等腰三角形的两边长为4、9,则它的周长为( )A. 17 B. 22 C. 17或22 D. 无法计算【答案】B【解析】【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:(1)若4为腰长,9为底边长,由于4+4<9,则三角形不存在;(2)若9为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为9+9+4=22.故选B.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.8.在□ABCD中,O是AC、BD的交点,过点O 与AC垂直的直线交边AD于点E,若□ABCD的周长为22cm,则△CDE的周长为( ).A. 8cm B. 10cm C. 11cm D. 12cm【答案】C【解析】【分析】由平行四边形ABCD的对角线相交于点O,OE⊥AC,根据线段垂直平分线的性质,可得AE=CE,又由平行四边形ABCD的AB+BC=AD+CD=11,继而可得△CDE的周长等于AD+CD.【详解】∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC,∵▱ABCD的周长22厘米,∴AD+CD=11,∵OE⊥AC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+CE+AE=AD+CD=11cm.故选C.【点睛】此题考查了平行四边形的性质,关键是根据线段垂直平分线的性质进行分析.此题难度不大,注意掌握数形结合思想的应用.9.某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意列得方程为( )A. B. C. D. 【答案】C【解析】设每个A型包装箱可以装书x本,则每个B型包装箱可以装书(x+15)本,根据单独使用B型包装箱比单独使用A型包装箱可少用6个,列方程得:,故选C.10.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB′交CD于点E,若AB=3,则△AEC的面积为( )A. 3 B. 1.5 C. 2 D. 【答案】D【解析】【详解】解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30,即∠DAC=60,∴∠DAD′=60,∴∠DAE=30,∴∠EAC=∠ACD=30,∴AE=CE.在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=3﹣x,AD=3=.根据勾股定理得:,解得:x=2,∴EC=2,则S△AEC=EC•AD=.故选D.二.填空题11.若式子有意义,则x的取值范围是_____.【答案】x≥﹣2且x≠0.【解析】由知,∴,又∵在分母上,∴.故答案为且.12.多项式x2+mx+5因式分解得(x+5)(x+n),则m=_____,n=_____.【答案】 (1). 6 (2). 1【解析】【分析】将(x+5)(x+n)展开,得到,使得x2+(n+5)x+5n与x2+mx+5的系数对应相等即可.【详解】解: ∵(x+5)(x+n)=x2+(n+5)x+5n,∴x2+mx+5=x2+(n+5)x+5n.∴.故答案为:6;1.13.若一元二次方程ax2﹣bx﹣2019=0有一个根为x=﹣1,则a+b=_____.【答案】2019【解析】【分析】直接把x=−1代入一元二次方程ax2−bx−2019=0中即可得到a+b的值.【详解】解:把x=﹣1代入一元二次方程ax2﹣bx﹣2019=0得a+b﹣2019=0,所以a+b=2019.故答案为2019【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.14.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3,则△ABC的周长是_______.【答案】41【解析】【分析】证明△ABN≌△ADN,求得AD=AB=10,BN=DN,继而可和CD长,结合M为BC的中点判断MN是△BDC的中位线,从而得出CD长,再根据三角形周长公式进行计算即可得.【详解】在△ABN和△ADN中,,∴△ABN≌△ADN,∴BN=DN,AD=AB=10,又∵点M是BC中点,∴MN是△BDC的中位线,∴CD=2MN=6,故△ABC的周长=AB+BC+CD+AD=10+15+6+10=41,故答案为41.【点睛】本题考查了全等三角形的判定与性质,三角形的中位线定理,等腰三角形的判定等,注意培养自己的敏感性,一般出现高、角平分线重合的情况,都需要找到等腰三角形.三.解答题15.(1)解不等式组:;(2)因式分解:(x﹣2)(x﹣8)+8;(3)解方程:+=;(4)解方程:(2x﹣1)2=3﹣6x.【答案】(1)﹣3<x≤2;(2)(x﹣4)(x﹣6);(3) x=﹣5;(4)x=0.5或x=﹣1【解析】【分析】(1)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.(2)先去括号、合并同类项化简原式,再利用十字相乘法分解可得;(3)根据解分式方程的步骤计算可得;(4)利用因式分解法求解可得.【详解】(1)解不等式3x<5x+6,得:x>﹣3,解不等式,得:x≤2,则不等式组解集为﹣3<x≤2;(2)原式=x2﹣10x+24=(x﹣4)(x﹣6);(3)两边都乘以2(x﹣2),得:1+x﹣2=﹣6,解得x=﹣5,检验:x=﹣5时,2(x﹣2)≠0,∴分式方程的解为x=﹣5;(4)∵(2x﹣1)2+3(2x﹣1)=0,∴(2x﹣1)(2x+2)=0,则2x﹣1=0或2x+2=0,解得x=0.5或x=﹣1.【点睛】本题主要考查解一元二次方程,熟练掌握解一元二次方程的几种常用方法并结合方程的特点选择简便的方法是解题的关键.16.先化简,再求值:,其中x是不等式组的整数解.【答案】-1【解析】【分析】先利用分式运算规则进行化简,解出不等式得到x取值,要注意x的取值是不能使前面分式分母为0【详解】∵,∴解得:﹣3<x≤,∴整数解为﹣2,﹣1,0,根据分式有意义的条件可知:x=0,∴原式=【点睛】本题考查分式的化简与求值,本题关键在于解出不等式之后取x值时,需要注意不能使原分式分母为017.某校在一次大课间活动中,采用了四种活动形式:A:跑步;B:跳绳;C:做操;D:游戏,全校学生都选择了一种形式参与活动,小明对同学们选择的活动形式进行了随机抽样调查,并绘制了不完整的两幅统计图,结合统计图,回答下列问题:(1)本次调查学生共 人,并将条形图补充完整;(2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?(3)学校在每班A、B、C、D四种活动形式中,随机抽取两种开展活动,求每班抽取的两种形式恰好是“做操”和“跳绳”的概率.【答案】(1)300;(2)选择“跑步”这种活动的学生约有800人;(3)【解析】【分析】(1)用A类的人数除以它所占的百分比得到调查的总人数,再用总人数减去其它项目的人数,求出跳绳的人数,从而补全统计图;(2)用该校的总人数乘以“跑步”的人数所占的百分比即可;(3)画树状图展示所有12种等可能的结果数,找出每班抽取的两种形式恰好是“做操”和“跳绳”的结果数,然后利用概率公式求解.【详解】(1)根据题意得:12040%=300(人),所以本次共调查了300名学生;跳绳的有300﹣120﹣60﹣90=30人,补图如下:故答案为:300;(2)根据题意得:200040%=800(人),答:选择“跑步”这种活动的学生约有800人;(3)画树状图为:共有12种等可能的结果数,其中每班抽取的两种形式恰好是“做操”和“跳绳”的结果数为2,所以每班抽取的两种形式恰好是“做操”和“跳绳”的概率==.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.18.已知关于x的方程x2-2(k-1)x+k2 =0有两个实数根x1.x2.(1)求实 数k的取值范围;(2)若(x1+1)(x2+1)=2,试求k的值.【答案】(1) ;(2)k=-3.【解析】【分析】(1)根据一元二次方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;(2)根据根与系数可得出x1+x2=2(k-1),x1x2=k2,结合(x1+1)(x2+1)=2,即可得出关于k的一元二次方程,解之即可得出k值,结合(1)的结论即可得出结论.【详解】解:(1)∵关于x的方程x2-2(k-1)x+k2=0有两个实数根,∴△=[-2(k-1)]2-41k2≥0,∴k≤,∴实数k的取值范围为k≤.(2)∵方程x2-2(k-1)x+k2=0的两根为x1和x2,∴x1+x2=2(k-1),x1x2=k2.∵(x1+1)(x2+1)=2,即x1x2+(x1+x2)+1=2,∴k2+2(k-1)+1=2,解得:k1=-3,k2=1.∵k≤,∴k=-3.【点睛】本题考查了根的判别式以及根与系数关系,解题的关键是:(1)牢记“当△≥0时,方程有实数根”;(2)根据根与系数关系结合(x1+1)(x2+1)=2,找出关于k的一元二次方程.19.如图,已知△ABC三个顶点的坐标分别是A(﹣3,1),B(﹣1,﹣1),C(2,2).(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1,B1,C1的坐标;(2)画出△ABC绕点B逆时针旋转90所得到的△A2B2C2,并求出S.【答案】(1)见解析,A1,B1,C1的坐标分别为;(3,1),(1,﹣1),(2,2);(2)见解析,2【解析】【分析】(1)利用关于y轴对称的点的坐标特征写出点A1,B1,C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出点A、C的对应点A2、C2得到△A2B2C2,然后用一个矩形的面积分别减去三个三角形的面积计算.【详解】(1)如图,△A1B1C1为所作;点A1,B1,C1的坐标分别为;(3,1),(1,﹣1),(2,2)(2)如图,△A2B2C2为所作,.【点睛】本题考查了作图-旋转变换和轴对称变换,根据旋转的性质作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.20.已知:点A、C分别是∠B的两条边上的点,点D、E分别是直线BA、BC上的点,直线AE、CD相交于点P.(1)点D、E分别在线段BA、BC上;①若∠B=60(如图1),且AD=BE,BD=CE,则∠APD的度数为 ;②若∠B=90(如图2),且AD=BC,BD=CE,求∠APD的度数;(2)如图3,点D、E分别在线段AB、BC的延长线上,若∠B=90,AD=BC,∠APD=45,求证:BD=CE.【答案】(1)①60;②45;(2)见解析【解析】【分析】(1)连结AC,由条件可以得出△ABC为等边三角形,再由证△CBD≌△ACE就可以得出∠BCD=∠CAE,就可以得出结论;(2)作AF⊥AB于A,使AF=BD,连结DF,CF,就可以得出△FAD≌△DBC,再证△DCF为等腰直角三角形,由∠FAD=∠B=90,就可以得出AF∥BC,就可以得出四边形AECF是平行四边形,就有AE∥CF,就可以得出∠EAC=∠FCA,就可以得出结论;(3)作AF⊥AB于A,使AF=BD,连结DF,CF,就可以得出△FAD≌△DBC,再证△DCF为等腰直角三角形,就有∠DCF=∠APD=45,推出CF∥AE,由∠FAD=∠B=90,就可以得出AF∥BC,就可以得出四边形AFCE是平行四边形,就有AF=CE.【详解】(1)①如图1,连结AC,∵AD=BE,BD=CE,∴AD+BD=BE+CE,∴AB=BC.∵∠B=60,∴△ABC为等边三角形.∴∠B=∠ACB=60,BC=AC.在△CBD和△ACE中,∴△CBD≌△ACE(SAS),∴∠BCD=∠CAE.∵∠APD=∠CAE+∠ACD,∴∠APD=∠BCD+∠ACD=60.故答案为60;②如图2,作AF⊥AB于A,使AF=BD,连结DF,CF,∴∠FAD=90.∵∠B=90,∴∠FAD=∠B.在△FAD和△DBC中,,∴△FAD≌△DBC(SAS),∴DF=DC,∠ADF=∠BCD.∵∠BDC+∠BCD=90,∴∠ADF+∠BDC=90,∴∠FDC=90,∴∠FCD=45.∵∠FAD=90,∠B=90,∴∠FAD+∠B=180,∴AF∥BC.∵DB=CE,∴AF=CE,∴四边形AECF是平行四边形,∴AE∥CF,∴∠EAC=∠FCA.∵∠APD=∠ACP+∠EAC,∴∠APD=∠ACP+∠ACE=45;(2)如图3,作AF⊥AB于A,使AF=BD,连结DF,CF,∴∠FAD=90.∵∠ABC=90,∴∠FAD=∠DBC=90.在△FAD和△DBC中,,∴△FAD≌△DBC(SAS),∴DF=DC,∠ADF=∠BCD.∵∠BDC+∠BCD=90,∴∠ADF+∠BDC=90,∴∠FDC=90,∴∠FCD=45.∵∠APD=45,∴∠FCD=∠APD,∴CF∥AE.∵∠FAD=90,∠ABC=90,∴∠FAD=∠ABC,∴AF∥BC.∴四边形AECF是平行四边形,∴AF=CE,∴CE=BD.【点睛】此题考查了全等三角形的判定与性质的运用,等边三角形的判定及性质的运用,平行四边形的判定及性质的运用,等腰直角三角形的判定及性质的运用.解答时证明三角形全等是关键.四.填空题21.已知,,则2x3y+4x2y2+2xy3=_________.【答案】-25【解析】【分析】先用提公因式法和完全平方公式法把2x3y+4x2y2+2xy3因式分解,然后把,代入计算即可.【详解】∵,,∴2x3y+4x2y2+2xy3=2xy(x2+2xy+y2)=2xy(x+y)2=2() 52=-25.故答案为-25.【点睛】此题主要考查了提取公因式法以及公式法分解因式,整体代入法求代数式的值,,熟练掌握因式分解的方法是解答本题的关键.22.若关于x的分式方程﹣=1无解,则m的值为_____.【答案】﹣2或1【解析】【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x的值,代入整式方程计算即可求出m的值.【详解】去分母得:x2﹣mx﹣3x+3=x2﹣x,解得:(2+m)x=3,由分式方程无解,得到2+m=0,即m=﹣2或,即m=1,综上,m的值为﹣2或1.故答案为:﹣2或1【点睛】此题考查了分式方程的解,注意分母不为0这个条件.23.已知关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,若x1,x2满足3x1=|x2|+2,则m的值为_____【答案】4【解析】【分析】根据方程的系数结合根的判别式,即可得出△=20-4m≥0,解之即可得出m的取值范围.由根与系数的关系可得x1+x2=6①、x1•x2=m+4②,分x2≥0和x2<0可找出3x1=x2+2③或3x1=-x2+2④,联立①③或①④求出x1、x2的值,进而可求出m的值.【详解】∵关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,∴△=(﹣6)2﹣4(m+4)=20﹣4m≥0,解得:m≤5,∴m的取值范围为m≤5.∵关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,∴x1+x2=6①,x1•x2=m+4②.∵3x1=|x2|+2,当x2≥0时,有3x1=x2+2③,联立①③解得:x1=2,x2=4,∴8=m+4,m=4;当x2<0时,有3x1=﹣x2+2④,联立①④解得:x1=﹣2,x2=8(不合题意,舍去).∴符合条件的m的值为4.故答案是:4.【点睛】本题考查了根与系数的关系以及一元二次方程的解,熟练掌握根与系数的关系公式:,是解题的关键.24.在平面直角坐标系xOy中,点A、B分别在x轴、y轴的正半轴上运动,点M为线段AB的中点.点D、E分别在x轴、y轴的负半轴上运动,且DE=AB=10.以DE为边在第三象限内作正方形DGFE,则线段MG长度的最大值为_____.【答案】10+5【解析】分析】取DE的中点N,连结ON、NG、OM.根据勾股定理可得.在点M与G之间总有MG≤MO+ON+NG(如图1),M、O、N、G四点共线,此时等号成立(如图2).可得线段MG的最大值.【详解】如图1,取DE的中点N,连结ON、NG、OM.∵∠AOB=90,∴OM=AB=5.同理ON=5.∵正方形DGFE,N为DE中点,DE=10,∴.在点M与G之间总有MG≤MO+ON+NG(如图1),如图2,由于∠DNG的大小为定值,只要∠DON=∠DNG,且M、N关于点O中心对称时,M、O、N、G四点共线,此时等号成立,∴线段MG取最大值10+5.故答案为:10+5.【点睛】此题考查了直角三角形的性质,勾股定理,四点共线的最值问题,得出M、O、N、G四点共线,则线段MG长度的最大是解题关键.25.如图,已知边长为4的菱形ABCD中,AC=BC,E,F分别为AB,AD边上的动点,满足BE=AF,连接EF交AC于点G,CE、CF分别交BD与点M,N,给出下列结论:①∠AFC=∠AGE;②EF=BE+DF;③△ECF面积的最小值为3,④若AF=2,则BM=MN=DN;⑤若AF=1,则EF=3FG;其中所有正确结论的序号是_____.【答案】①③④【解析】【分析】由“SAS”可证△BEC≌△AFC,再证△EFC是等边三角形,由外角的性质可证∠AFC=∠AGE;由点E在AB上运动,可得BE+DF≥EF;由等边三角形的性质可得△ECF面积的EC2,则当EC⊥AB时,△ECF的最小值为3;由等边三角形的性质和菱形的性质可求MN=BD﹣BM﹣DN=,由平行线分线段成比例可求EG=3FG,即可求解.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD=4,∵AC=BC,∴AB=BC=CD=AD=AC,∴△ABC,△ACD是等边三角形,∴∠ABC=∠BAC=∠ACB=∠DAC=60,∵AC=BC,∠ABC=∠DAC,AF=BE,∴△BEC≌△AFC(SAS)∴CF=CE,∠BCE=∠ACF,∴∠ECF=∠BCA=60,∴△EFC是等边三角形,∴∠EFC=60,∵∠AFC=∠AFE+∠EFC=60+∠AFE,∠AGE=∠AFE+∠CAD=60+∠AFE,∴∠AFC=∠AGE,故①正确;∵BE+DF=AF+DF=AD,EF=CF≤AC,∴BE+DF≥EF(当点E与点B重合时,BE+DF=EF),故②不正确;∵△ECF是等边三角形,∴△ECF面积的EC2,∴当EC⊥AB时,△ECF面积有最小值,此时,EC=2,△ECF面积的最小值为3,故③正确;如图,设AC与BD交点为O,若AF=2,则FD=BE=AE=2,∴点E为AB中点,点F为AD中点,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO,∠ABO=∠ABC=30,∴AO=AB=2,BO=AO=2,∴BD=4,∵△ABC是等边三角形,BE=AE=2,∴CE⊥AB,且∠ABO=30,∴BE=EM=2,BM=2EM,∴BM=,同理可得DN=,∴MN=BD﹣BM﹣DN=,∴BM=MN=DN,故④正确;如图,过点E作EH∥AD,交AC于H,∵AF=BE=1,∴AE=3,∵EH∥AD∥BC,∴∠AEH=∠ABC=60,∠AHE=∠ACB=60,∴△AEH是等边三角形,∴EH=AE=3,∵AD∥EH,∴,∴EG=3FG,故⑤错误,故答案为:①③④【点睛】本题是四边形综合题,考查菱形的性质,等边三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理等知识,添加辅助线是解题的关键.五.解答题26.某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?【答案】(1)每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件;(2)共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.【解析】【分析】(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工个零件,根据工作时间工作总量工作效率结合一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设A型机器安排m台,则B型机器安排台,根据每小时加工零件的总量型机器的数量型机器的数量结合每小时加工的零件不少于72件且不能超过76件,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各安排方案.【详解】(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工个零件,依题意,得:,解得:x=6,经检验,x=6是原方程的解,且符合题意,.答:每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件;(2)设A型机器安排m台,则B型机器安排台,依题意,得:,解得:,为正整数,,答:共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.27.(如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点 M处,点C落在点N处,MN与CD交于点P, 连接EP.⑴如图②,若M为AD边的中点,①△AEM的周长=_________cm;②求证:EP=AE+DP;⑵随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.【答案】(1)①6 ,②见解析;(2)△PDM周长保持不变,理由见解析.【解析】【分析】(1)①由折叠知BE=EM,AE+EM+AM=AE+EB+AM=AB+AM,根据边长及中点易求周长;②延长EM交CD延长线于Q点.可证△AEM≌△DQM,得AE=DQ,EM=MQ.所以PM垂直平分EQ,得EP=PQ,得证;(2)不变化,可证△AEM∽△DMP,两个三角形的周长比为AE:MD,设AM=x,根据勾股定理可以用x表示MD的长与△MAE的周长,再根据周长比等于相似比,即可求解.【详解】(1)①由折叠可知,BE=BM,∠B=∠MEP=90,△AEM的周长= AE+EM+AM=AE+EB+AM=AB+AM.∵AB=4,M是AD中点,∴△AEM的周长=6(cm)②证明:延长EM交CD延长线于Q点.∵∠A=∠MDQ=90,AM=DM,∠AME=∠DMQ,∴△AME≌△DMQ.∴AE=DQ,EM=MQ.又∵∠EMP=∠B=90,∴PM垂直平分EQ,有EP=PQ.∵PQ=PD+DQ,∴EP=AE+PD.(2)△PDM的周长保持不变,证明:设AM=xcm,则DM=(4-x)cm ,Rt△EAM中,由,,∵∠AME+∠AEM=90,∠AME+∠PMD=90,∴∠AEM=∠PMD,又∵∠A=∠D=90,∴△PDM∽△MAE,∴,即,∴, ∴△PDM的周长保持不变.28.矩形ABCO中,O(0,0),C(0,3),A(a,0),(a≥3),以A为旋转中心顺时针旋转矩形ABCO得到矩形AFED.(1)如图1,当点D落在边BC上时,求BD的长(用a的式子表示);(2)如图2,当a=3时,矩形AFED的对角线AE交矩形ABCO的边BC于点G,连结CE,若△CGE是等腰三角形,求直线BE的解析式;(3)如图3,矩形ABCO的对称中心为点P,当P,B关于AD对称时,求出a的值,此时在x轴、y轴上是否分别存在M,N使得四边形EFMN为平行四边形,若存在直接写出M,N坐标,不存在说明理由.【答案】(1)BD=;(2)y=﹣x+6;(3)M(,0),N(0,)【解析】【分析】(1)如图1,当点D落在边BC上时,BD2=AD2-AB2,即可求解;(2)分CG=EG、CE=GE、CE=CG三种情况分别求解;(3)①由点P为矩形ABCO的对称中心,得到求得直线PB的解析式为,得到直线AD的解析式为:,解方程即可得到结论;②根据①中的结论得到直线AD 的解析式为,求得∠DAB=30,连接AE,推出A,B,E三点共线,求得,设M(m,0),N(0,n),解方程组即可得到结论.【详解】(1)如图1,在矩形ABCO中,∠B=90当点D落在边BC上时,BD2=AD2﹣AB2,∵C(0,3),A(a,0)∴AB=OC=3,AD=AO=a,∴BD=;(2)如图2,连结AC,∵a=3,∴OA=OC=3,∴矩形ABCO是正方形,∴∠BCA=45,设∠ECG的度数为x,∴AE=AC,∴∠AEC=∠ACE=45+x,①当CG=EG时,x=45+x,解得x=0,不合题意,舍去;②当CE=GE时,如图2,∠ECG=∠EGC=x∵∠ECG+∠EGC+∠CEG=180,∴x+x+(45+x)=180,解得x=45,∴∠AEC=∠ACE=90,不合题意,舍去;③当CE=CG时,∠CEG=∠CGE=45+x,∵∠ECG+∠EGC+∠CEG=180,∴x+(45+x)+(45+x)=180,解得x=30,∴∠AEC=∠ACE=75,∠CAE=30如图3,连结OB,交AC于点Q,过E作EH⊥AC于H,连结BE,∴EH=AE=AC,BQ=AC,∴EH=BQ,EH∥BQ且∠EHQ=90∴四边形EHQB是矩形∴BE∥AC,设直线BE的解析式为y=﹣x+b,∵点B(3,3)在直线上,则b=6,∴直线BE的解析式为y=﹣x+6;(3)①∵点P为矩形ABCO的对称中心,∴,∵B(a,3),∴PB的中点坐标为:,∴直线PB的解析式为,∵当P,B关于AD对称,∴AD⊥PB,∴直线AD的解析式为:,∵直线AD过点,∴,解得:a=3,∵a≥3,∴a=3;②存在M,N;理由:∵a=3,∴直线AD 的解析式为y=﹣x+9,∴∴∠DAO=60,∴∠DAB=30,连接AE,∵AD=OA=3,DE=OC=3,∴∠EAD=30,∴A,B,E三点共线,∴AE=2DE=6,∴,设M(m,0),N(0,n),∵四边形EFMN是平行四边形,∴,解得:,∴M(,0),N(0,).【点睛】本题考查的是一次函数综合运用,涉及到正方形和等腰三角形性质、圆的基本知识,其中(2),要注意分类求解,避免遗漏.。