当前位置首页 > 中学教育 > 高考
搜柄,搜必应! 快速导航 | 使用教程  [会员中心]

2014届高考数学(理科)专题教学案:不等式选讲(含答案)

文档格式:DOC| 4 页|大小 306.01KB|积分 15|2022-09-03 发布|文档ID:148022563
第1页
下载文档到电脑,查找使用更方便 还剩页未读,继续阅读>>
1 / 4
此文档下载收益归作者所有 下载文档
  • 版权提示
  • 文本预览
  • 常见问题
  • 常考问题22 不等式选讲[真题感悟]1.(2013·江苏卷)已知a≥b>0,求证:2a3-b3≥2ab2-a2b.证明 2a3-b3-(2ab2-a2b)=2a(a2-b2)+b(a2-b2)=(a2-b2)(2a+b)=(a-b)(a+b)(2a+b).因为a≥b>0,所以a-b≥0,a+b>0,2a+b>0,从而(a-b)(a+b)(2a+b)≥0,即2a3-b3≥2ab2-a2b.2.(2012·江苏卷)已知实数x,y满足:|x+y|<,|2x-y|<,求证:|y|<.解 因为3|y|=|3y|=|2(x+y)-(2x-y)|≤2|x+y|+|2x-y|,由题设知,|x+y|<,|2x-y|<,从而3|y|<+=,所以|y|<.[考题分析]高考对本内容的考查主要有:(1)含绝对值的不等式的解法;B级要求.(2)不等式证明的基本方法;B级要求.(3)利用不等式的性质求最值;B级要求.(4)几个重要的不等式的应用.B级要求.1.含有绝对值的不等式的解法(1)|f(x)|>a(a>0)⇔f(x)>a或f(x)<-a;(2)|f(x)|0)⇔-a0,b>0),在不等式的证明和求最值中经常用到.7.证明不等式的传统方法有比较法、综合法、分析法.另外还有拆项法、添项法、换元法、放缩法、反证法、判别式法、数形结合法等.热点一 含绝对值不等式的解法【例1】 已知函数f(x)=|x+a|+|x-2|.(1)当a=-3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.解 (1)当a=-3时,f(x)=当x≤2时,由f(x)≥3得-2x+5≥3,解得x≤1;当20.所以a3+b3≥(a2+b2).热点三 不等式的综合应用【例3】 已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|-2≤x≤1}.(1)求a的值;(2)若≤k恒成立,求k的取值范围.解 (1)由|ax+1|≤3得-4≤ax≤2.又f(x)≤3的解集为{x|-2≤x≤1},所以当a≤0时,不合题意.当a>0时,-≤x≤,得a=2.(2)记h(x)=f(x)-2f,则h(x)=所以|h(x)|≤1,因此k≥1.[规律方法] 解答含有绝对值不等式的恒成立问题时,通常将其转化为分段函数,再求分段函数的最值,从而求出所求参数的值.【训练3】 (2013·苏北四市模拟)已知非负实数x,y,z满足x2+y2+z2+x+2y+3z=,求x+y+z的最大值.解 条件可化为2+(y+1)2+2=,则2≤3=,从而x+y+z≤,当且仅当x+=y+1=z+=时,等号成立.所以,当x=1,y=,z=0时,x+y+z取得最大值.备课札记:  。

    点击阅读更多内容
    卖家[上传人]:lisufang2020
    资质:实名认证