当前位置首页 > 幼儿/小学教育 > 考试/试题
搜柄,搜必应! 快速导航 | 使用教程  [会员中心]

2023届重庆市七校高一上数学期末教学质量检测试题含解析

文档格式:DOC| 18 页|大小 1.28MB|积分 15|2022-12-20 发布|文档ID:176085658
第1页
下载文档到电脑,查找使用更方便 还剩页未读,继续阅读>>
1 / 18
此文档下载收益归作者所有 下载文档
  • 版权提示
  • 文本预览
  • 常见问题
  • 2022-2023学年高一上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知函数在上是增函数,则的取值范围是(  )A. B.C. D.2.已知函数,则下列对该函数性质的描述中不正确的是()A.的图像关于点成中心对称B.的最小正周期为2C.的单调增区间为D.没有对称轴3.已知是上的减函数,那么的取值范围是()A. B.C. D.4.如图,正方体中,直线与所成角大小为A. B.C. D.5.有四个关于三角函数的命题::xR, +=: x、yR, sin(x-y)=sinx-siny: x=sinx : sinx=cosyx+y=其中假命题的是A., B.,C., D.,6.若函数在区间内存在零点,则实数的取值范围是()A. B.C. D.7.如果函数在上的图象是连续不断的一条曲线,那么“”是“函数在内有零点”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件8.设则的值为A. B.C.2 D.9.若正实数满足,(为自然对数的底数),则()A. B.C. D.10.已知,则函数与函数的图象可能是()A. B.C. D.11.已知角的顶点在原点,始边与轴正半轴重合,终边上有一点,,则( )A. B.C. D.12.函数是指数函数,则的值是A.4 B.1或3C.3 D.1二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13.已知点,直线与线段相交,则实数的取值范围是____;14.将函数的图象先向下平移1个单位长度,在作关于直线对称的图象,得到函数,则__________.15.已知实数x、y满足,则的最小值为____________.16.函数的最小值为______.三、解答题(本大题共6个小题,共70分。

    解答时要求写出必要的文字说明、证明过程或演算步骤17.已知,且求的值;求的值18.如图,点,,在函数的图象上(1)求函数的解析式;(2)若函数图象上的两点,满足,,求四边形OMQN面积的最大值19.中学阶段是学生身体发育重要的阶段,长时间熬夜学习严重影响学生的身体健康.某校为了解甲、乙两个班的学生每周熬夜学习的总时长(单位:小时),从这两个班中各随机抽取名同学进行调查,将他们最近一周熬夜学习的总时长作为样本数据,如下表所示.如果学生一周熬夜学习的总时长超过小时,则称为“过度熬夜”.甲班乙班(1)分别计算出甲、乙两班样本的平均值;(2)为了解学生过度熬夜的原因,从甲、乙两班符合“过度熬夜”的样本数据中,抽取个数据,求抽到的数据来自同一个班级的概率;(3)从甲班的样本数据中有放回地抽取个数据,求恰有个数据为“过度熬夜”的概率20.2015年10月5日,我国女药学家屠呦呦获得2015年诺贝尔医学奖.屠呦呦和她的团队研制的抗疟药青蒿素,是科学技术领域的重大突破,开创了定疾治疗新方法,挽救了全球特别是发展中国家数百万人的生命,对促进人类健康、减少病痛发挥了难以估量的作用.当年青蒿素研制的过程中,有一个小插曲:虽然青蒿素化学成分本身是有效的,但是由于实验初期制成的青蒿素药片在胃液中的溶解速度过慢,导致药片没有被人体完全吸收,血液中青蒿素的浓度(以下简称为“血药浓度”)的峰值(最大值)太低,导致药物无效.后来经过改进药片制备工艺,使得青蒿素药片的溶解速度加快,血药浓度能够达到要求,青蒿素才得以发挥作用.已知青蒿素药片在体内发挥作用的过程可分为两个阶段,第一个阶段为药片溶解和进入血液,即药品进入人体后会逐渐溶解,然后进入血液使得血药浓度上升到一个峰值;第二个阶段为吸收和代谢,即进入血液的药物被人体逐渐吸收从而发挥作用或者排出体外,这使得血药浓度从峰值不断下降,最后下降到一个不会影响人体机能的非负浓度值.人体内的血药浓度是一个连续变化的过程,不会发生骤变.现用t表示时间(单位:),在时人体服用青蒿素药片;用C表示青蒿素的血药浓度(单位:).根据青蒿素在人体发挥作用的过程可知,C是t的函数.已知青蒿素一般会在1.5小时达到需要血药浓度的峰值.请根据以上描述完成下列问题:(1)下列几个函数中,能够描述青蒿素血药浓度变化过程的函数的序号是___________.①②③④(2)对于青蒿素药片而言,若血药浓度的峰值大于等于0.1,则称青蒿素药片是合格的.基于(1)中你选择的函数(若选择多个,则任选其中一个),可判断此青蒿素药片___________;(填“合格”、“不合格”)(3)记血药浓度的峰值为,当时,我们称青蒿素在血液中达到“有效浓度”,基于(1)中你选择的函数(若选择多个,则任选其中一个),计算青蒿素在血液中达到“有效浓度”的持续时间.21.已知函数,(1)求的单调递增区间;(2)令函数,再从条件①、条件②这两个条件中选择一个作为已知,求在区间上的最大值及取得最大值时的值条件①:; 条件②:注:如果选择条件①和条件②分别解答,按第一个解答计分22.整治人居环境,打造美丽乡村,某村准备将一块由一个半圆和长方形组成的空地进行美化,如图,长方形的边为半圆的直径,O为半圆的圆心,,现要将此空地规划出一个等腰三角形区域(底边)种植观赏树木,其余的区域种植花卉.设.(1)当时,求的长;(2)求三角形区域面积的最大值.参考答案一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则x2﹣ax+3a>0且f(2)>0,根据二次函数的单调性,我们可得到关于a的不等式,解不等式即可得到a的取值范围【详解】若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则当x∈[2,+∞)时,x2﹣ax+3a>0且函数f(x)=x2﹣ax+3a为增函数即,f(2)=4+a>0解得﹣4<a≤4故选C【点睛】本题考查的知识点是复合函数的单调性,二次函数的性质,对数函数的单调区间,其中根据复合函数的单调性,构造关于a的不等式,是解答本题的关键2、C【解析】根据正切函数的周期性,单调性和对称性分别进行判断即可【详解】对于A:令,令,可得函数的一个对称中心为,故正确;对于B:函数f(x)的最小正周期为T=,故正确;对于C:令,解不等式可得函数的单调递增区间为,故错误;对于D:正切函数不是轴对称图形,故正确故选:C【点睛】本题考查与正切函数有关的性质,涉及周期性,单调性和对称性,利用整体代换的思想进行判断是解决本题的关键3、A【解析】由为上减函数,知递减,递减,且,从而得,解出即可【详解】因为为上的减函数,所以有,解得:,故选:A.4、C【解析】连接通过线线平行将直线与所成角转化为与所成角,然后构造等边三角形求出结果【详解】连接如图就是与所成角或其补角,在正方体中,,故直线与所成角为.故选C.【点睛】本题考查了异面直线所成角的大小的求法,属于基础题,解题时要注意空间思维能力的培养.5、A【解析】故是假命题;令但故是假命题.6、B【解析】利用零点存在性定理知,代入解不等式即可得解.【详解】函数在区间内存在零点,且函数在定义域内单调递增,由零点存在性定理知,即,解得所以实数的取值范围是故选:B7、A【解析】由零点存在性定理得出“若,则函数在内有零点”举反例即可得出正确答案.【详解】由零点存在性定理可知,若,则函数在内有零点而若函数在内有零点,则不一定成立,比如在区间内有零点,但所以“”是“函数在内有零点”的充分而不必要条件故选:A【点睛】本题主要考查了充分不必要条件的判断,属于中档题.8、D【解析】由题意可先求f(2),然后代入f(f(2))=f(﹣1)可得结果.【详解】解:∵∴f(2)∴f(f(2))=f(﹣1)=故选D【点睛】本题主要考查了分段函数的函数值的求解,解题的关键是需要判断不同的x所对应的函数解析式,属于基础试题9、C【解析】由指数式与对数式互化为相同形式后求解【详解】由题意得:,,,①,又,,,和是方程的根,由于方程的根唯一,,由①知,,故选:C10、D【解析】根据对数关系得,所以函数与函数的单调性相同即可得到选项.【详解】,所以,,不为1的情况下:,函数与函数的单调性相同,ABC均不满足,D满足题意.故选:D【点睛】此题考查函数图象的辨析,根据已知条件找出等量关系或不等关系,分析出函数的单调性得解.11、B【解析】由三角函数定义列式,计算,再由所给条件判断得解.【详解】由题意知,故,又,∴.故选:B12、C【解析】由题意,解得.故选C考点:指数函数的概念二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13、【解析】由直线,即,此时直线恒过点,则直线的斜率,直线的斜率,若直线与线段相交,则,即,所以实数的取值范围是点睛:本题考查了两条直线的位置关系的应用,其中解答中把直线与线段有交点转化为直线间的斜率之间的关系是解答的关键,同时要熟记直线方程的各种形式和直线过定点的判定,此类问题解答中把直线与线段有交点转化为定点与线段端点斜率之间关系是常见的一种解题方法,着重考查了学生分析问题和解答问题的能力14、5【解析】利用平移变换和反函数的定义得到的解析式,进而得解.【详解】函数的图象先向下平移1个单位长度得到作关于直线对称的图象,即的反函数,则,,即,故答案为:5【点睛】关键点点睛:本题考查图像的平移变换和反函数的应用,利用反函数的性质求出的解析式是解题的关键,属于基础题.15、【解析】利用基本不等式可得,即求.【详解】依题意,当且仅当,即时等号成立.所以的最小值为.故答案为:.16、【解析】先根据二倍角余弦公式将函数转化为二次函数,再根据二次函数性质求最值.【详解】所以令,则因此当时,取最小值,故答案为:【点睛】本题考查二倍角余弦公式以及二次函数最值,考查基本分析求解能力,属基础题.三、解答题(本大题共6个小题,共70分。

    解答时要求写出必要的文字说明、证明过程或演算步骤17、 (1);(2)【解析】由.,利用同角三角函数关系式先求出,由此能求出的值利用同角三角函数关系式和诱导公式化简为,再化简为关于的齐次分式求值【详解】(1)因为.,所以,故(2)【点睛】本题考查三角函数值的求法,考查同角三角函数关系式和诱导公式等基础知识,考查运算求解能力,属于基础题型18、(1) (2)【解析】(1)由图可求出,从而求得,由图可知函数处取得最小值,从而可求出的值,再将点的坐标代入函数中可求出,进而可求出函数的解析式,(2)由题意求得所以,,而四边形OMQN的面积为S,则,代入化简利用三角函数的性质可求得结果【小问1详解】由图可知的周期T满足,得又因为,所以,解得又在处取得最小值,即,得,所以,,解得,因为,所以.由,得,所以综上,【小问2详解】当时,,所以.由知此时记四边形OMQN的面积为S,则又因为,所以,所以当,即时,取得最大值所以四边形OMQN面积的最大值是19、(1),;(2);(3)【解析】(1)利用平均数公式代入求解;(2)由题意得甲班和乙班各有“过度熬夜”的人数为,计算得基本事件总数和个数据来自同一个班级的基本事件的个数,然后利用古典概型的公式代入计算取个数据来自同一个班级的概率;(3)甲班共有个数据,其中“过度熬夜”的数据有个,计算得基本事件总数和恰有个数据为“过度熬夜”的基本事件的个数,利用古典概型的公式代入计算恰有个数据为“过度熬夜”的概率.【详解】(1)甲的平均值:;乙的平均值:;(2)由题意,甲班和乙班各有“过度熬夜”的人数为,抽取个数据,基本事件的总数为个,抽到来自同一个班级的基本事件的个数为,则抽取个数据来自同一个班级的概率为;(3)甲班共有个数据,其中“过度熬夜”的数据有个,从甲班的样本数据中有放回地抽取个数据,基本事件的总数为个,恰有个数据为“过度熬夜”包含的基本事件的个数为个,则恰有个数据为“过度熬夜”的概率为.20、(1)④(2)合格(3)【解析】(1)先分析函数同时满足的条件,再逐一对每个函数进行验证;(2)作差比较进行判断;(3)令,分段解不等式,再取并集即可求解.【小问1详解】解:根据题意,得函数同时满足以下条件:A.函数在上单调递增,在上单调递减;B.当时,函数取得最大值;函数的最小值非负;C.函数是一个连续变化的函数,不会发生骤变.选择①:,因为不满足条件B,所以①不能描述青蒿素血药浓度变化过程;选择②:,当时,,当时,函数取得最大值,不满足条件B,所以②不能描述青蒿素血药浓度变化过程;选择③:,因为,,所以不满足条件C,所以③不能描述青蒿素血药浓度变化过程;选择④:,因为,且当时,,所以同时满足三个条件,即④能描述青蒿素血药浓度变化过程;综上所述,能够描述青蒿素血药浓度变化过程的函数的序号是④.【小问2详解】解:由(1)得:函数④:因为,即血药浓度的峰值大于0.1,所以此青蒿素药片合格,即答案为:合格;【小问3详解】解:当时,令,所以,即,即,解得或,即;当时,令,则,解得,即;综上所述,青蒿素在血液中达到“有效浓度”的持续时间为.21、(1), (2)答案不唯一,具体见解析【解析】(1)根据正弦函数的单调增区间建立不等式求解即可得出;(2)选①代入,化简,令,转化为二次函数求值域即可,选择条件②代入化简,令,根据正弦函数的图象与性质求最值即可求解.【小问1详解】函数的单调增区间为()由,,解得,,所以的单调增区间为,【小问2详解】选择条件①:令,因为,所以所以所以,因为在区间上单调递增,所以当时,取得最大值所以当时,取得最大值选择条件②:令,因为,所以所以当时,即时,取得最大值22、(1)(2)【解析】(1)利用三角函数表达出的长;(2)用的三角函数表达出三角形区域面积,利用换元法转化为二次函数,求出三角形区域面积的最大值.【小问1详解】设MN与AB相交于点E,则,则,故的长为【小问2详解】过点P作PF⊥MN于点F,则PF=AE=,而MN=ME+EN=,则三角形区域面积为,设,因为,所以,故,而,则,故当时,取得最大值,故三角形区域面积的最大值为。

    点击阅读更多内容
    卖家[上传人]:每天不一样
    资质:实名认证