论文小波脊线提取算法及应用综述
小波脊线提取算法及应用综述学号:SX1305154 姓名:孙运玺目录小波脊线提取算法及应用综述 11、 信号的分析方法及优缺点 22、 小波脊线理论 .43、 脊线提取算法 54、 小结 95参考文献: 9摘要:信号的恰当表示是信号与信息处理的核心任务之一实际信号中,瞬时频率的变化规 律反应了信号的重要特征,合适的表达信号的特征非常重要小波作为一种信号分析工具,既可以得到信号的轮廓特征,也可以得到信号的细节特征 平稳相位原理表明:当信号满足渐进性要求时,小波系数在时间尺度平面上呈现出“山脊” 的特征,脊上的系数包含了信号的所有信息,能够用来重构信号自90年代起,出现了许 多种脊线提取和基于脊线的信号重构算法本文主要介绍小波脊线的提取算法,信号分析方 法及小波脊线理论关键字:小波脊线,信号提取,信号重构Abstract: An appropriate represention of a signal is one of the most importmant tasks in signal and information processing. For some pratical signals, the instanganeous frequencycontains important infortion. So it is useful to choose a proper way to describe the signals.As an effective tool in analysis of signals,we can get gross features and small features simutaneously. The staionary phase principle proves that for the asymptotic signals,the behavior of their continuous wavelet coefficients shows rige characteristics on the time-scale plane,the coefficients restricted to the ridges include all the information of a signal,from which the signal can be reconstructed.From 1990s lots of ridge sxtraction and signal reconstruction algorithms proposed.1、信号的分析方法及优缺点在研究非平稳信号时,瞬时频率和瞬时幅值的提取尤为重要。
Foourier变换方法对分析平 稳信号的频率成分非常有效,但是对于非平稳信号则无能为力将信号的瞬时频率域时间变 化联系在一起,需要对信号在时频联合分布的平面进行描述目前的很多方法[1][2][3 ]如短 时傅里叶变换(STFT)、小波分析法等,这些方法属于线性时频分布,其核心思想为将信号 在一系列正交或者非正交的基函数投影,其值反应了信号与基函数的相似程度,而基函数本 身有很强的时频局部特征,所以所有的投影值可以作为信号时频联合分布的一个很好的度量 常见的双线性时频分布有:格纳分布(WD)和魏格纳-维尔分布(WVD)等,这一类分布可 以统一称为Cohen分布,在WVD的基础上选择不同的函数可以得到不同的分布在这类分 布中,信号需要首先以乘积的形式计算后才能进一步得到在时间-频率平面上的分布Cohen 分布还有其他的一些形式90年代后期出现了一种新的非线性分布⑷:Hilbert-Huang变换 法(HHT),核心内容是美籍华裔科学家NEHuang(黄锷)提出的经验模态函数分解(EMD) 在支持瞬时频率观点的信号处理领域,瞬时频率的意义只能体现在“单一成分”,但从信号 中提取出具有实际意义的信号,既缺乏严格的理论支持,也没有合乎工程要求的实际方法。
Huang在考虑Monocomponent严格定义的前提下,依据工程经验定义的本征模态函数(IMF), 认为满足IMF定义要求的信号其瞬时频率是具有意义的,并提出EMD来获得信号的IMF, IMF瞬时频率随时间变化规律能够反映信号的时变特性各种时频分布都有其优缺点和适用范围短时傅里叶变换所用分析窗口宽度是不变的,所 有频率范围内时域或频域分辨率是不变的,因为具有一定的局限性Cohen类时频分布中 WVD法频域和时域分辨率比较高,但存在严重的交叉项和负项,Cohen类中其他分部为减 小交叉项而提出的改进方法,但是降低了时频分辨率Gilbert变换可以很好的估计瞬时频率, 但在系统中存在高阻尼时其估计值会产生很大误差,而且要求信号为单一成分信号,对于含 有多个频率成分的信号要求先用带通滤波等方法分离各信号°Hilbert-Huang变换法通过经验 模式分解(EMD)将信号分解为一系列的固有模式函数,然后对每一个IMF进行Hilbert变 换求出信号瞬时频率,但是经验模式分解本质上是一种经验的方法,存在端点效应、差值函 数选取、迭代条件停止设置等问题,实际应用中存在很大的问题小波分析同时具有多分辨 分析的特点,具有较好的时频分析能力,尤其适合多频率成分分析。
如果在小波变换中尺度因子和平移因子都是去连续变化的,则得到连续小波变换,虽然 连续小波变换存在很大的冗余,但是它从更多角度反映信号的特征渐进信号经过连续小波 变换以后,其徐庶膜值呈现山脊的特征,有稳定相位李璐可以证明:脊线上的小波系数和脊 线的位置都有很明确的物理意义,可以完整表征信号的全部信息并可以很好的表征信号的时 频分布一旦完成对信号脊线的提取,就能够进一步提取信号特征并重构信号在研究非平稳信号特性的时候,视频图可以直观的了解信号中各分量的瞬时频率及幅值 变化情况,但不能准确地得到瞬时频率和幅值,特别是对于瞬时幅值,时频图值反应了瞬时 幅值的大小为了更加精确的计算瞬时频率和瞬时幅值,通过小波脊线可以得到,这就相当 于进行解调分析根据这一特性,小波脊线已经得到了广泛的应用Guilemain等人将其用 于语音信号的特征提取[6],、权健峰等人将其用于无线电信号的参数提取[7],张正平、牛发 亮、任宜春等将其应用到振动信号,分别实现了机械的故障检测⑻[9],钢筋混凝土的非线性 振动识别[10],机械特性的测试[11]基于小波变换识别信号瞬时频率的关键问题之一就是小波脊线的提取另一个问题就是 如何根据脊线上的小波系数来重构信号。
已经有很多文献对这两个问题进行了阐述,1992 年Delpart等提出了一种算法提取信号的脊线[5],其方法是基于Gabor变换或小波变换后的 相位信息,在时间尺度空间通过迭代的方法提取小波脊线,该方法在信号中值具有单一脊线 并且信号不含有噪声的情况下可以得到很好的效果郁春来等对小波脊线迭代的一些缺点: 如人意选取初始尺度不能保证算法的收敛性,在存在噪声是,迭代算法识别值与真实值存在 较大的偏差,小波参数选择等问题,提出了改进的迭代算法,通过求期望或者多项式建模的 方法对识别结果进行平滑处理,减少识别误差[12]由于实际过程中的信号旺旺对相位影响 严重,而脊线又不单一,基于相位的方法不能解决这些问题,为此Carmona等提出采用施 加罚函数的方法来降低噪声的影响,并采用模拟退火法求罚函数的最小值的算法来提取小波 脊,它基于小波变换系数的模信息,因为小波系数的模通常具有比相位更强的抗噪性,然而 这种方法只适用于单一信号分量[13]对于多个信号分量,Carmona提出基于随机走动的爬 山算法,并将该算法应用于语音识别,但该算法较复杂且计算耗时14]Helene等分别提出 了直接基于小波系数建模的局部极大值的方法提取小波脊线,该算法较为简答,计算方便 [15]。
Liebling等提出的基于动态规划的小波脊线提取算法,该算法将脊线提取问题转化为一 个线性规划问题,脊线的精确度有所提高,但运算量扔很大[16]总的来说,目前主要采用 两种方法提取小波脊线:一种是基于小波系数的相位信息,一种是基于小波系数的模信息2、小波脊线理论本章主要介绍小波脊线理论,信号在连续小波平面上的分布会呈现类似地形中山脊的形 状,称为小波脊线理论分析表明,沿着小波变换时频平面中脊线上分布的参数与原始信号 之间有着很强的相似性,能够用来描述原始信号的重要参数脊线上分布数据的起伏变化, 脊线的位置都有实际的物理意义,直接对应着信号的幅值与频率的变化对时频平面上的小 波脊线,可以懂小波变换的幅值或相位中提取若''L' I" 为实小波甲Ct)的解析形式,则渐进信号S(t)的解析小波变换为:=法!”&其中:吼谷5 =德小你(")式中*标示复数共轭根据平稳相位原理可知,对积分是2-9起主要作用的是所谓的驻 点ts而对于单成分信号,当考虑信号s (t)及小波变换甲(t)均为渐进函数是,相位④(t)关于时间t只有一个驻点ts,即满足巾…定义小波脊线为: ,,由驻点的性质可知,在小波脊线上有=0二币即嵌^二!%(0) □.⑵很明显,尺度a为平移参数b的函数,即有:3、脊线提取算法信号的脊线特征算法中首先要解决的就是信号在变换域上脊线的提取问题。
对信号脊提取 的效果直接影响到后续对信号的处理结果,如信号重构、特征提取、模式识别等一个好的 脊提取算法不仅要能够在噪声比较小的情况下准确提取带脊的正确位置,而且要能够在噪声 较大的情况下也能够得到较满意的提取效果3.1基于相位信息的脊线提取通过在时间尺度平面上去小波系数模的极大值,可以求出小波脊线,但是这种方法必 须搜索整个区域,因此非常耗费时间,基于相位信息可减少计算量根据是2-13可以通过 在信号对应的连续小波变换平面上寻找满足如上条件的点来达到提取脊线的目的,该算法提 供了一种可能,即在提取脊的同时避免了计算整个连续小波变换平面上分布的参数而只是计 算分布在脊两侧的有限范围内的小波参数,从而显著减少了计算量这种计算方法可以通过 一个定点计算方法实现考虑信号的离散序列,令Ts=1/fs是抽样周期,对一个固定尺度参数a,信号sk=s(kTs) 的小波变换WTa(k)=WT(a,kTs),中(k )是其香味,用Db表示对b的离 散差分算子,则由迭代算法得到的解a(kTs)满足下述方程:七脆))=黑 0-1)具体算法如下:1)令%(4)是的初始mi殳u施第/占的迅代次数,则第若+1 &送代的初始代为第 暮.,.迭代的最悠ifi:气(%十伉十1)霉)MH&)十位)(3-力则丹C0的第芥+ 5第*1次迭代的最终值为3)当公*匚£时,停止迭代.其中&为所要求达到的精度.是一个小的 %一正实数,否则M到第"•步..在实际使用中,上述算法收敛很快,一般每个信号采样点上只需要迭代两三次即可。
这 意味着不必对连续小波变换时频平面上所有点进项计算,只需在脊线范围两侧很小的范围内 进行该方法的缺点主要是对噪声非常敏感,只有在比较高的信噪比的情况下才能准确的崎 岖信号小波变换的脊线该方法的另一个缺点是只是用与信号中含有单一成分的情况,当信 号含有多个成分的情况下,即使各个成分在小波变换平面上能够清楚的分辨出来,也不能适 应该方法进行多条脊线的提取3.2基于模值信息的脊线提取本节主要着重介绍Carmona的多脊线提取算法 Crazy Climber算法和作者提出的基于图像分割的迹象提取算法3.2.1疯狂爬坡法为了精确地提取到各个分量的小波脊线,Carmona等提出了疯狂爬坡算法该算法通过加 权密度函数和特定的链接程序来诸葛提取脊线,该方法源于MCMC仿真思想,但又有所不 同实际上,该方法只是将一系列按一定规则随机运动的点视为一种密度分布,所有的点按 照相同的简单规则在整个平面范围内移动,并逐渐被时频分布平面上脊线所在位置吸引而聚 集就像是在爬山一样,这也是疯狂爬坡法的由来类似于模拟退火法,整个系统也是有一 个设定的初始温度,并且温度逐渐降低,随之各个可以移动的点逐渐稳定下来聚集在脊线所 在的位置上。
这也是该方法的名字Climber 一词的由来但该方法与模拟退火法又有所不同主要是每个可以移动的点在平面上的一个方向上是可以自由移动的,而并不是依附某条脊线 上以后就保持不变但是,因为整个系统的温度是在逐渐降低,每个点会靠近相应的一条脊 线,并且会在运动的大部分时间里是在脊线上因此,如果同时观测大量这样运动点的共同 特征,并且将每个自由运动的点停留在某个网格点上的次数作为一种测度的话,则最终形成 的测度将会在脊线所在位置上非常尖锐从而达到对脊线所在位置的描述Cr;i7,y Cl imh^T算法的具体步骤如下:代吱佶弓的时频分布圈为-个离散的BXK矩阵,坡E5的方向为水平方向,K 的方向为三.上方侦’主L1阵上每…点(F: /) = J & [ I = >!. ‘ B], /匚[I、E ■2的值为小波变换系数的,也则有;初始化"个可移动爬升起始点(称为和度M炬阵这「个•爬升起始贞和整个时璜分布平面I■一足均匀分布 的,度量矩阵4的初始值取为0,只对一个点的移动规则进行描述,其余点有相 同的移动规®L每一步迭代用时何/湛示「则;A) 在初始时刻5,记录可移动顾点的初始位置,记为羽(0),其中#巴| I , 2,……-N1,B) 在,时刻,可移动爬升点对应的位胃为星5 =化力。
在下一个时刻/十「土不考虑边界口的情况7司移动爬刃九对吧的位置-(/,/) ft以F规则确定;a)对/叶刻的按照I以的柢率左移或者右移一格,即有E5或 [=/- I :h)以相同的概率对/时刻的/值上移或者下移一格'即有/=讣\或/ = T 也可以不移动『具体规则是了如果"八> "/),则该点难宜移讪.■(/+1) = (4 /);如果肱")则不进行移动,’匚(/十】} =(7」LO 移动结束后,在度量矩阵牧相应代置灯/)上增加度以值4/(?,/)D〕电复步骤日」C), 口到满足断部平!迭代次数■:F)对度最矩阵Dr任意给定-久&(/;_/) .在(/'十AZ /) III (I W±明.甲■■!找其最优的相都点,并与其形成一条脊线.V)重复步骤E). 土到N有满卫要求的.或都在脊线中,形成整个时频平血的 晋象一3.2.2基于图像分割法的脊线提取算法将小波系数模值矩阵看做一副图像,由于模值较大的系数通常分布在几个分散的区域,运 用图像分割可以快速得到这些区域,对于每个区域求极大值点就可以得到脊线基于“图像” a割的脊线提取算法基本步骤为;1) 对信号进行连续小波变换」取小波系数模值平方得到亲数模值平方矩阵&2) 对系数模值平7速!阵一非行《巾亍伯'分解(Singular \aluc dixompcsitions SVD)」对 时频面上的小波系数进行SVD波敏 这一步可以减少由于嘿声引起的伪同 部最小值点』3) 对步骤2得到的矩阵图像分割,保留分制区域的系数,井对梅个N域标号.4) 天!・』停个区域内求”最优”背线’5) 设置一个阚值(可以是长度或是能量、删去一些背谶(长度过短或是能量过 小L4、小结小波是分析瞬时信号的重要方法,在小波分析中,小波脊线能够很好的反应小波的全部信 息,能够进行小波的重构,具有非常高的应用价值。
本文主要介绍了目前的信号处理和分析 方法,分析了各个方法的利弊比较发现,小波更适合瞬时信号的处理,而小波脊线能够很 好的处理多分辨信号分析问题,得到了广泛的应用小波脊线的提取方法主要包括基于相位的脊线提取算法和基于模值的脊线提取算法,本文 围绕着两种方法介绍了三种脊线提取算法,给出了具体的算法步骤,为后续应用提供理论基 础5参考文献\\]刘本永.非•平稳信号分析导论〔M],北京:囤防工业出牍社,颂6.[2] I Cahcn, Tiinc-fra[ucncy analysis ['匚 Englewood CliPK NJ: Prcntict Hall,[3] 冬晔,信号时额分析及应用[M],哈尔滨;哈示滨工业大学出版社,200frh[4' N,匕.Huang . Z. Shen . S.R. Long MC Wu. ] 1. K. Shik Q. Zheng .. ?% C\ Yen .. C, C\ Tung and H. H. Liu. The einpincal mt?dc d^composiiLcn ajid the 11 Lihert spectrum ibr nonl inear and non-stati-oiiary lime series an^|.1 ]7 Pmc. R Sqc. Loud. A. 199&[5] N. De-lprat . H. l:s.cudic. F. CjlllIleniain tet al. Asymptotic wavelet and Gabor analysis; EMraction of iiistantaneous treqiLen-ciealJ]. [El Ji Tans+ ftifonnatian Theur>\ 1992, 3K(2): 644-6Mft1' F, Guillemain. R,K. Martinet Characterizaiion of acolistic &i^n




