新人教版六年级下册数学第五单元鸽巢问题教案

学习好资料 欢迎下载第五单元 数学广角教学目标:1、经历:“抽屉原理”的探究过程,初步了解“抽屉原理”2、会用“抽屉原理”解决简单的实际问题3、通过“抽屉原理”的灵活应用感受数学的魅力单元重点:认识“抽屉原理”单元难点:灵活应用“抽屉原理”解决实际问题课时安排:2 课时第一课时:鸽巢问题教学内容: 鸽巢问题(一)教学目标:1、经历“抽屉原理”的探究过程,初步了解“抽屉原理” 会用“抽屉原理”解决简单的实际问题2、 通过操作发展学生的类推能力,形成比较抽象的数学思维3、通过“抽屉原理”的灵活应用感受数学的魅力重点: 初步了解“抽屉原理”难点: 会用“抽屉原理”解决简单的实际问题教学过程一、问题引入师:同学们,你们玩过抢椅子的游戏吗?现在,老师这里准备了3 把椅子,请 4 个同学上来,谁愿来?1.游戏要求:开始以后,请你们 5 个都坐在椅子上,每个人必须都坐下2.讨论:“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗?二、探究新知(一)教学例 11.出示题目:有 4 枝铅笔,3 个盒子,把 4 枝铅笔放进 3 个盒子里,怎么放?有几种不同的放法?师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师出示各种情况。
板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1),问题:4 个人坐在 3 把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学4 支笔放进 3 个盒子里呢?引导学生得出:不管怎么放,总有一个盒子里至少有 2 枝笔问题:(1)“总有”是什么意思?(一定有)学习好资料 欢迎下载(2)“至少”有 2 枝什么意思?(不少于两只,可能是 2 枝,也可能是多于 2 枝?)教师引导学生总结规律:我们把 4 枝笔放进 3 个盒子里,不管怎么放,总有一个盒子里至少有 2 枝铅笔这是我们通过实际操作现了这个结论那么,你们能不能找到一种更为直接的方法得到这个结论呢?学生思考并进行组内交流问题:把 6 枝笔放进 5 个盒子里呢?还用摆吗?把 7 枝笔放进 6 个盒子里呢?把 8 枝笔放进 7 个盒子里呢?把 9 枝笔放进 8 个盒子里呢?……你发现什么?(笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有 2 枝铅笔总结:只要放的铅笔数盒数多 1,总有一个盒里至少放进 2 支二)教学例 21.出示题目:把 5 本书放进 2 个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把 7 本书放进 2 个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把 9 本书放进 2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?(留给学生思考的空间,师巡视了解各种情况)2.学生汇报,教师给予表扬后并总结:总结 1:把 5 本书放进 2 个抽屉里,如果每个抽屉里先放 2 本,还剩 1 本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有 3 本书。
总结 2:“总有一个抽屉里的至少有 2 本”只要用“商+1”就可以得到三、拓展应用: 如果把 5 本书放进 3 个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?用“商+2”可以吗?(学生讨论)引导学生思考:到底是“商+1”还是“商+余数”呢?谁的结论对呢?(学生小组里进行研究、讨论总结:用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加 1 本书”了总 结 有关抽屉原理,你还有哪些疑问呢?作业布置 做一做板书设计 抽屉原理(一)例 1、有 4 枝铅笔,3 个盒子,把 4 枝铅笔放进 3 个盒子里,怎么放?有几种不同的放法?(4,0,0)(3,1,0)(2,2,0)(2,1,1)教学后记:学习好资料 欢迎下载第二课时:鸽巢问题教学内容:鸽巢问题(二)教学目标1、进一步掌握抽屉原理,掌握抽屉原理的反向求法能力2、通过各种活动培养学生自己动手动脑去思考的习惯3、体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识重点: 进一步掌握抽屉原理,掌握抽屉原理的反向求法难点: 通过各种活动培养学生自己动手动脑去思考的习惯教学过程:一、创设情境、引入新课:师:一天晚上,有一个小女孩正要从抽屉里拿袜子。
抽屉里有黑白两种颜色的袜子各10 双突然停电了小女孩至少摸出多少只袜子,才能保证拿出相同颜色的袜子?学生思考、发言师:学习了这节课我们就能解决类似的问题了二、活动探究、深入了解:(一)出示例 3:盒子里有同样大小的红球和蓝球各 4 个要想摸出的球一定有 2 个同色的,至少要摸出几个球?1、学生提出猜想2、用预先准备的学具,小组合作交流4、小组反馈,师相机板书:3、得出结论:把颜色看作抽屉有两种颜色,只要摸出的球比他们的颜色至少多 1,就能保证有两个球同色二)研究规律师:如果盒子里有蓝、红、黄球各6 个,从盒子里摸出两个同色的球,至少要摸出几个球?分小组讨论后汇报再出示做一做第 2 题,汇报后得出:问题结论只与球的颜色种数也就是抽屉数有关三、拓展应用有红色、白色、黑色的筷子各 10 根混放在一起,让你闭上眼睛去摸1)你至少要摸出几根才敢保证有两根筷子是同色的?(2)至少拿几根,才能保证有两双同色的筷子?为什么?总 结:1、通过今天的学习你有什么收获?2、回归生活:你还能举出一些能用抽屉原理解释的生活中的例子吗?作业布置 75 页 4、5 题板书设计 抽屉原理(二)例 3:盒子里有同样大小的红球和蓝球各 4 个。
要想摸出的球一定有 2 个同色的,至少要摸出几个球?有两种颜色,只要摸出的球比他们的颜色至少多 1,就能保证有两个球同色学习好资料 欢迎下载教学后记:。