当前位置首页 > 中学教育 > 高考
搜柄,搜必应! 快速导航 | 使用教程  [会员中心]

2019-2020年高考数学一轮复习第九章解析几何考点规范练47抛物线文新人教A版.doc

文档格式:DOC| 7 页|大小 44.50KB|积分 9|2019-11-28 发布|文档ID:2623701
第1页
下载文档到电脑,查找使用更方便 还剩页未读,继续阅读>>
1 / 7
此文档下载收益归作者所有 下载文档
  • 版权提示
  • 文本预览
  • 常见问题
  • 2019-2020年高考数学一轮复习第九章解析几何考点规范练47抛物线文新人教A版1.(xx广西桂林一模)若抛物线y2=2px(p>0)上的点A(x0,)到其焦点的距离是点A到y轴距离的3倍,则p等于(  )                A. B.1 C. D.22.抛物线y=-4x2上的一点M到焦点的距离为1,则点M的纵坐标是(  )A.- B.-C. D.3.(xx河北张家口4月模拟)已知抛物线C:y2=4x的焦点为F,过点F的直线与抛物线交于A,B两点,若|AB|=6,则线段AB的中点M的横坐标为(  )A.2 B.4 C.5 D.64.(xx山西运城模拟)已知抛物线x2=ay与直线y=2x-2相交于M,N两点,若MN中点的横坐标为3,则此抛物线方程为(  )A.x2=y B.x2=6yC.x2=-3y D.x2=3y5.已知椭圆E的中心在坐标原点,离心率为,E的右焦点与抛物线C:y2=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=(  )A.3 B.6C.9 D.126.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线-y2=1的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数a=(  )A. B.C. D.7.若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是     .8.已知抛物线y2=4x,过焦点F的直线与抛物线交于A,B两点,过A,B分别作y轴的垂线,垂足分别为C,D,则|AC|+|BD|的最小值为     .9.已知过抛物线y2=2px(p>0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x10)上任意一点,M是线段PF上的点,且|PM|=2|MF|,则直线OM的斜率的最大值为(  )A. B. C. D.113.(xx安徽合肥一模)已知双曲线-x2=1的两条渐近线分别与抛物线y2=2px(p>0)的准线交于A,B两点,O为坐标原点,若△OAB的面积为1,则p的值为(  )A.1 B. C.2 D.414.已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(1)求C的方程;(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线l与C相交于M,N两点,且A,M,B,N四点在同一圆上,求l的方程.高考预测15.已知抛物线x2=2py(p>0)的顶点到焦点的距离为1,过点P(0,p)作直线与抛物线交于A(x1,y1),B(x2,y2)两点,其中x1>x2.(1)若直线AB的斜率为,过A,B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程;(2)若=λ,是否存在异于点P的点Q,使得对任意λ,都有⊥(-λ)?若存在,求出点Q的坐标;若不存在,说明理由.答案:1.D 解析:由题意知,3x0=x0+,∴x0=,∴=2.∵p>0,∴p=2,故选D.2.B 解析:抛物线方程可化为x2=-,其准线方程为y=.设M(x0,y0),则由抛物线的定义,可知-y0=1,y0=-.3.A 解析:∵抛物线y2=4x,∴p=2.设A,B两点的横坐标分别为x1,x2,利用抛物线的定义,AB中点的横坐标为x0=(x1+x2)=(|AB|-p)=2,故选A.4.D 解析:设点M(x1,y1),N(x2,y2).由消去y,得x2-2ax+2a=0,所以=3,即a=3,因此所求的抛物线方程是x2=3y.5.B 解析:∵抛物线y2=8x的焦点坐标为(2,0),∴E的右焦点的坐标为(2,0).设椭圆E的方程为=1(a>b>0),∴c=2.∵,∴a=4.∴b2=a2-c2=12,于是椭圆方程为=1.∵抛物线的准线方程为x=-2,将其代入椭圆方程可得A(-2,3),B(-2,-3),∴|AB|=6.6.A 解析:因为抛物线的准线为x=-,所以1+=5,解得p=8,所以m=4.又双曲线的左顶点坐标为(-,0),所以,解得a=,故选A.7.9 解析:设点M坐标为(xM,yM).抛物线y2=4x的准线为x=-1,由抛物线的定义知xM+1=10,即xM=9.8.2 解析:由题意知F(1,0),|AC|+|BD|=|AF|+|FB|-2=|AB|-2,即|AC|+|BD|取得最小值时当且仅当|AB|取得最小值.依抛物线定义知当|AB|为通径,即|AB|=2p=4时,为最小值,所以|AC|+|BD|的最小值为2.9.解:(1)由题意得直线AB的方程为y=2,与y2=2px联立,消去y有4x2-5px+p2=0,所以x1+x2=.由抛物线定义得|AB|=x1+x2+p=+p=9,所以p=4,从而该抛物线的方程为y2=8x.(2)由(1)得4x2-5px+p2=0,即x2-5x+4=0,则x1=1,x2=4,于是y1=-2,y2=4,从而A(1,-2),B(4,4).设C(x3,y3),则=(x3,y3)=(1,-2)+λ(4,4)=(4λ+1,4λ-2).又=8x3,所以[2(2λ-1)]2=8(4λ+1),整理得(2λ-1)2=4λ+1,解得λ=0或λ=2.10.解:(1)设P(x,y)是曲线C上任意一点,则点P(x,y)满足-x=1(x>0),化简得y2=4x(x>0).(2)设过点M(m,0)(m>0)的直线l与曲线C的交点为A(x1,y1),B(x2,y2).设l的方程为x=ty+m.由得y2-4ty-4m=0,Δ=16(t2+m)>0,于是因为=(x1-1,y1),=(x2-1,y2),所以=(x1-1)(x2-1)+y1y2=x1x2-(x1+x2)+y1y2+1.又<0,所以x1x2-(x1+x2)+y1y2+1<0,③因为x=,所以不等式③可变形为+y1y2-+1<0,即+y1y2-[(y1+y2)2-2y1y2]+1<0.④将①②代入④整理得m2-6m+1<4t2.⑤因为对任意实数t,4t2的最小值为0,所以不等式⑤对于一切t成立等价于m2-6m+1<0,即3-20),F,则.∵,∴∴kOM=,当且仅当t=时等号成立.∴(kOM)max=,故选C.13.B 解析:双曲线-x2=1的两条渐近线方程是y=2x.又抛物线y2=2px(p>0)的准线方程是x=-,故A,B两点的纵坐标是y=p.∵△AOB的面积为1,∴2p=1.∵p>0,∴p=.14.解:(1)设Q(x0,4),代入y2=2px得x0=.所以|PQ|=,|QF|=+x0=.由题设得,解得p=-2(舍去)或p=2.所以C的方程为y2=4x.(2)依题意知l与坐标轴不垂直,故可设l的方程为x=my+1(m≠0).代入y2=4x得y2-4my-4=0.设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=-4.故AB的中点为D(2m2+1,2m),|AB|=|y1-y2|=4(m2+1).又l的斜率为-m,所以l的方程为x=-y+2m2+3.将上式代入y2=4x,并整理得y2+y-4(2m2+3)=0.设M(x3,y3),N(x4,y4),则y3+y4=-,y3y4=-4(2m2+3).故MN的中点为E,|MN|=|y3-y4|=.由于MN垂直平分AB,故A,M,B,N四点在同一圆上等价于|AE|=|BE|=|MN|,从而|AB|2+|DE|2=|MN|2,即4(m2+1)2+=,化简得m2-1=0,解得m=1或m=-1.所求直线l的方程为x-y-1=0或x+y-1=0.15.解:(1)由已知得p=2,直线和y轴交于点(0,2),则直线AB的方程为y-2=x,即x-2y+4=0.由得A,B的坐标分别为(4,4),(-2,1).又x2=4y,可得y=x2,故y=x,故抛物线在点A处切线的斜率为2.设圆C的方程为(x-a)2+(y-b)2=r2,则解得a=-1,b=,r2=,故圆的方程为(x+1)2+,即为x2+y2+2x-13x+12=0.(2)依题意可设直线AB的方程为y=kx+2,代入抛物线方程x2=4y得x2-4kx-8=0,故x1x2=-8.①由已知=λ得-x1=λx2.若k=0,这时λ=1,要使⊥(-λ),点Q必在y轴上.设点Q的坐标是(0,m),从而=(0,2-m),-λ=(x1,y1-m)-λ(x2,y2-m)=(x1-λx2,y1-m-λ(y2-m)),故(-λ)=(2-m)[y1-λy2-m(1-λ)]=0,即y1-λy2-m(1-λ)=0,即-m=0,即(x1+x2)(x1x2-4m)=0,将①代入得m=-2.所以存在点Q(0,-2)使得⊥(-λ).。

    点击阅读更多内容
    卖家[上传人]:tiantian1990
    资质:实名认证