高三数学第二轮专题讲座复习:构建数学模型解数列综合题和应用性问题
高三数学第二轮专题讲座复习:构建数学模型解数列综合题和应用性问题高考要求 纵观近几年的高考,在解答题中,有关数列的试题出现的频率较高,不仅可与函数、方程、不等式、复数相联系,而且还与三角、立体几何密切相关;数列作为特殊的函数,在实际问题中有着广泛的应用,如增长率,减薄率,银行信贷,浓度匹配,养老保险,圆钢堆垒等问题 这就要求同学们除熟练运用有关概念式外,还要善于观察题设的特征,联想有关数学知识和方法,迅速确定解题的方向,以提高解数列题的速度 重难点归纳 1 解答数列综合题和应用性问题既要有坚实的基础知识,又要有良好的思维能力和分析、解决问题的能力;解答应用性问题,应充分运用观察、归纳、猜想的手段,建立出有关等差(比)数列、递推数列模型,再综合其他相关知识来解决问题 2 纵观近几年高考应用题看,解决一个应用题,重点过三关 (1)事理关 需要读懂题意,明确问题的实际背景,即需要一定的阅读能力 (2)文理关 需将实际问题的文字语言转化数学的符号语言,用数学式子表达数学关系 (3)事理关 在构建数学模型的过程中;要求考生对数学知识的检索能力,认定或构建相应的数学模型,完成用实际问题向数学问题的转化 构建出数学模型后,要正确得到问题的解,还需要比较扎实的基础知识和较强的数理能力 典型题例示范讲解 例1从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加 (1)设n年内(本年度为第一年)总投入为an万元,旅游业总收入为bn万元,写出an,bn的表达式;(2)至少经过几年,旅游业的总收入才能超过总投入?命题意图 本题主要考查建立函数关系式、数列求和、不等式等基础知识;考查综合运用数学知识解决实际问题的能力,本题有很强的区分度,属于应用题型,正是近几年高考的热点和重点题型 知识依托 本题以函数思想为指导,以数列知识为工具,涉及函数建模、数列求和、不等式的解法等知识点 错解分析 (1)问an、bn实际上是两个数列的前n项和,易与“通项”混淆;(2)问是既解一元二次不等式又解指数不等式,易出现偏差 技巧与方法 正确审题、深刻挖掘数量关系,建立数量模型是本题的灵魂,(2)问中指数不等式采用了换元法,是解不等式常用的技巧 解 (1)第1年投入为800万元,第2年投入为800×(1-)万元,…第n年投入为800×(1-)n-1万元,所以,n年内的总投入为 an=800+800×(1-)+…+800×(1-)n-1=800×(1-)k-1=4000×[1-()n]第1年旅游业收入为400万元,第2年旅游业收入为400×(1+),…,第n年旅游业收入400×(1+)n-1万元 所以,n年内的旅游业总收入为bn=400+400×(1+)+…+400×(1+)k-1=400×()k-1=1600×[()n-1](2)设至少经过n年旅游业的总收入才能超过总投入,由此bn-an>0,即1600×[()n-1]-4000×[1-()n]>0,令x=()n,代入上式得 5x2-7x+2>0 解此不等式,得x<,或x>1(舍去) 即()n<,由此得n≥5 ∴至少经过5年,旅游业的总收入才能超过总投入 例2已知Sn=1++…+,(n∈N*),设f(n)=S2n+1-Sn+1,试确定实数m的取值范围,使得对于一切大于1的自然数n,不等式f(n)>[logm(m-1)]2-[log(m-1)m]2恒成立 命题意图 本题主要考查应用函数思想解决不等式、数列等问题,需较强的综合分析问题、解决问题的能力 知识依托 本题把函数、不等式恒成立等问题组合在一起,构思巧妙 错解分析 本题学生很容易求f(n)的和,但由于无法求和,故对不等式难以处理 技巧与方法 解决本题的关键是把f(n)(n∈N*)看作是n的函数,此时不等式的恒成立就转化为 函数f(n)的最小值大于[logm(m-1)]2-[log(m-1)m]2 解 ∵Sn=1++…+ (n∈N*)∴f(n+1)>f(n)∴f(n)是关于n的增函数∴f(n) min=f(2)=∴要使一切大于1的自然数n, f(n)>[logm(m-1)]2-[log(m-1)m]2恒成立只要>[logm(m-1)]2-[log(m-1)m]2成立即可由得m>1且m≠2此时设[logm(m-1)]2=t 则t>0于是 解得0<t<1 由此得0<[logm(m-1)]2<1 解得m>且m≠2 例3 已知二次函数y=f(x)在x=处取得最小值- (t>0),f(1)=0 (1)求y=f(x)的表达式;(2)若任意实数x都满足等式f(x)·g(x)+anx+bn=xn+1[g(x)]为多项式,n∈N*),试用t表示an和bn;(3)设圆Cn的方程为(x-an)2+(y-bn)2=rn2,圆Cn与Cn+1外切(n=1,2,3,…);{rn}是各项都是正数的等比数列,记Sn为前n个圆的面积之和,求rn、Sn 解 (1)设f(x)=a(x-)2-,由f(1)=0得a=1 ∴f(x)=x2-(t+2)x+t+1 (2)将f(x)=(x-1)[x-(t+1)]代入已知得 (x-1)[x-(t+1)]g(x)+anx+bn=xn+1,上式对任意的x∈R都成立,取x=1和x=t+1分别代入上式得 且t≠0,解得an=[(t+1)n+1-1],bn=[1-(t+1n)(3)由于圆的方程为(x-an)2+(y-bn)2=rn2,又由(2)知an+bn=1,故圆Cn的圆心On在直线x+y=1上,又圆Cn与圆Cn+1相切,故有rn+rn+1=|an+1-an|=(t+1)n+1设{rn}的公比为q,则 ②÷①得q==t+1,代入①得rn=∴Sn=π(r12+r22+…+rn2)=[(t+1)2n-1] 学生巩固练习 1 已知二次函数y=a(a+1)x2-(2a+1)x+1,当a=1,2,…,n,…时,其抛物线在x轴上截得的线段长依次为d1,d2,…,dn,…,则 (d1+d2+…+dn)的值是( )A 1 B 2 C 3 D 42 在直角坐标系中,O是坐标原点,P1(x1,y1)、P2(x2,y2)是第一象限的两个点,若1,x1,x2,4依次成等差数列,而1,y1,y2,8依次成等比数列,则△OP1P2的面积是_________ 3 从盛满a升酒精的容器里倒出b升,然后再用水加满,再倒出b升,再用水加满;这样倒了n次,则容器中有纯酒精_________升 4 据2000年3月5日九届人大五次会议《政府工作报告》 “2001年国内生产总值达到95933亿元,比上年增长7 3%,”如果“十·五”期间(2001年~2005年)每年的国内生产总值都按此年增长率增长,那么到“十·五”末我国国内年生产总值约为_________亿元 参考答案:1 解析 当a=n时y=n(n+1)x2-(2n+1)x+1由|x1-x2|=,得dn=,∴d1+d2+…+dn答案 A2 解析 由1,x1,x2,4依次成等差数列得 2x1=x2+1,x1+x2=5解得x1=2,x2=3 又由1,y1,y2,8依次成等比数列,得y12=y2,y1y2=8,解得y1=2,y2=4,∴P1(2,2),P2(3,4) ∴=(3,4)∴ 答案 13 解析 第一次容器中有纯酒精a-b即a(1-)升,第二次有纯酒精a(1-)-,即a(1-)2升,故第n次有纯酒精a(1-)n升 答案 a(1-)n4 解析 从2001年到2005年每年的国内生产总值构成以95933为首项,以7 3%为公比的等比数列,∴a5=95933(1+7 3%)4≈120000(亿元) 答案 1200004。




