新版天津市高考数学文二轮复习检测:专题能力训练17专题六 直线、圆、圆锥曲线 Word版含解析
1 1专题能力训练17 直线与圆锥曲线 专题能力训练第40页 一、能力突破训练1.(20xx全国Ⅱ,文12)过抛物线C:y2=4x的焦点F,且斜率为3的直线交C于点M(M在x轴的上方),l为C的准线,点N在l上且MN⊥l,则M到直线NF的距离为( ) A.5 B.22 C.23 D.33答案:C解析:由题意可知抛物线的焦点F(1,0),准线l的方程为x=-1,可得直线MF:y=3(x-1),与抛物线y2=4x联立,消去y得3x2-10x+3=0,解得x1=13,x2=3.因为M在x轴的上方,所以M(3,23).因为MN⊥l,且N在l上,所以N(-1,23).因为F(1,0),所以直线NF:y=-3(x-1).所以M到直线NF的距离为|3×(3-1)+23|(-3)2+12=23.2.与抛物线y2=8x相切倾斜角为135°的直线l与x轴和y轴的交点分别是A和B,那么过A,B两点的最小圆截抛物线y2=8x的准线所得的弦长为( )A.4 B.22 C.2 D.2答案:C解析:设直线l的方程为y=-x+b,联立直线与抛物线方程,消元得y2+8y-8b=0.因为直线与抛物线相切,所以Δ=82-4×(-8b)=0,解得b=-2,故直线l的方程为x+y+2=0,从而A(-2,0),B(0,-2).因此过A,B两点的最小圆即为以AB为直径的圆,其方程为(x+1)2+(y+1)2=2,而抛物线y2=8x的准线方程为x=-2,此时圆心(-1,-1)到准线的距离为1,故所截弦长为2(2)2-12=2.3.设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的方程为( )A.y=x-1或y=-x+1B.y=33(x-1)或y=-33(x-1)C.y=3(x-1)或y=-3(x-1)D.y=22(x-1)或y=-22(x-1)答案:C解析:由题意可得抛物线焦点F(1,0),准线方程为x=-1.当直线l的斜率大于0时,如图,过A,B两点分别向准线x=-1作垂线,垂足分别为M,N,则由抛物线定义可得,|AM|=|AF|,|BN|=|BF|.设|AM|=|AF|=3t(t>0),|BN|=|BF|=t,|BK|=x,而|GF|=2,在△AMK中,由|BN||AM|=|BK||AK|,得t3t=xx+4t,解得x=2t,则cos∠NBK=|BN||BK|=tx=12,∴∠NBK=60°,则∠GFK=60°,即直线AB的倾斜角为60°.∴斜率k=tan 60°=3,故直线方程为y=3(x-1).当直线l的斜率小于0时,如图,同理可得直线方程为y=-3(x-1),故选C.4.在平面直角坐标系xOy中,双曲线C1:x2a2-y2b2=1(a>0,b>0)的渐近线与抛物线C2:x2=2py(p>0)交于点O,A,B.若△OAB的垂心为C2的焦点,则C1的离心率为 . 答案:32解析:双曲线的渐近线为y=±bax.由y=bax,x2=2py,得A2bpa,2b2pa2.由y=-bax,x2=2py,得B-2bpa,2b2pa2.∵F0,p2为△OAB的垂心,∴kAF·kOB=-1,即2b2pa2-p22bpa-0·-ba=-1,解得b2a2=54,∴c2a2=94,即可得e=32.5.(20xx北京,文19)已知椭圆C的两个顶点分别为A(-2,0),B(2,0),焦点在x轴上,离心率为32.(1)求椭圆C的方程;(2)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4∶5.(1)解设椭圆C的方程为x2a2+y2b2=1(a>b>0).由题意得a=2,ca=32,解得c=3.所以b2=a2-c2=1.所以椭圆C的方程为x24+y2=1.(2)证明设M(m,n),则D(m,0),N(m,-n).由题设知m≠±2,且n≠0.直线AM的斜率kAM=nm+2,故直线DE的斜率kDE=-m+2n.所以直线DE的方程为y=-m+2n(x-m),直线BN的方程为y=n2-m(x-2).联立y=-m+2n(x-m),y=n2-m(x-2),解得点E的纵坐标yE=-n(4-m2)4-m2+n2.由点M在椭圆C上,得4-m2=4n2.所以yE=-45n.又S△BDE=12|BD|·|yE|=25|BD|·|n|,S△BDN=12|BD|·|n|,所以△BDE与△BDN的面积之比为4∶5.6.在平面直角坐标系xOy中,过椭圆M:x2a2+y2b2=1(a>b>0)右焦点的直线x+y-3=0交M于A,B两点,P为AB的中点,且OP的斜率为12.(1)求M的方程;(2)C,D为M上两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值.解(1)设A(x1,y1),B(x2,y2),P(x0,y0),则x12a2+y12b2=1,x22a2+y22b2=1,y2-y1x2-x1=-1,由此可得b2(x2+x1)a2(y2+y1)=-y2-y1x2-x1=1.因为x1+x2=2x0,y1+y2=2y0,y0x0=12,所以a2=2b2.又由题意知,M的右焦点为(3,0),所以a2-b2=3.所以a2=6,b2=3.所以M的方程为x26+y23=1.(2)由x+y-3=0,x26+y23=1,解得x=433,y=-33或x=0,y=3.因此|AB|=463.由题意可设直线CD的方程为y=x+n-533




