江苏省镇江市镇江中学2022-2023学年数学高一上期末统考试题含解析

2022-2023学年高一上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上3.考生必须保证答题卡的整洁考试结束后,请将本试卷和答题卡一并交回一、选择题:本大题共10小题,每小题5分,共50分在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角的顶点与平面直角坐标系的原点重合,始边与x轴的正半轴重合,终边经过点,若,则的值为()A. B.C. D.2.已知则当最小时的值时A.﹣3 B.3C.﹣1 D.13.下列函数中,是奇函数,又在定义域内为减函数是( )A. B.C. D.4.已知函数则函数的零点个数为.A. B.C. D.5.若点关于直线的对称点是,则直线在轴上的截距是A.1 B.2C.3 D.46.若则函数的图象必不经过()A.第一象限 B.第二象限C.第三象限 D.第四象限7.样本,,,的平均数为,样本,,,的平均数为,则样本,,,,,,,的平均数为A B.C. D.8.在平面直角坐标系中,设角的终边上任意一点的坐标是,它与原点的距离是,规定:比值叫做的正余混弦,记作.若,则()A. B.C. D.9.设a为实数,“”是“对任意的正数x,”的( )A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件10.圆与圆的位置关系是( )A.内含 B.内切C.相交 D.外切二、填空题:本大题共6小题,每小题5分,共30分。
11.已知函数(1)利用五点法画函数在区间上的图象(2)已知函数,若函数的最小正周期为,求的值域和单调递增区间;(3)若方程在上有根,求的取值范围12.每一个声音都是由纯音合成的,纯音的数学模型是函数.若的部分图象如图所示,则的解析式为________.13.已知函数在区间是单调递增函数,则实数的取值范围是______14.设b>0,二次函数y=ax2+bx+a2-1的图象为下列之一,则a的值为______________15.函数的最小值为______.16.在平行四边形中,为上的中点,若与对角线相交于,且,则__________三、解答题:本大题共5小题,共70分解答时应写出文字说明、证明过程或演算步骤17.已知函数(1)若,求a的值;(2)判断函数的奇偶性,并证明你的结论;(3)若对于恒成立,求实数m的范围18.已知(1)化简;(2)若 是第三象限角,且,求的值19.已知函数.(1)请用“五点法”画出函数在上的图象(先列表,再画图);(2)求在上的值域;(3)求使取得最值时的取值集合,并求出最值20.已知函数的最小值正周期是(1)求的值;(2)求函数的最大值,并且求使取得最大值的x的集合21.已知函数.(1)求的最小正周期和最大值;(2)讨论在上的单调性.参考答案一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据终边经过点,且,利用三角函数的定义求解.【详解】因为角终边经过点,且,所以,解得,故选:C2、B【解析】由题目已知可得:当时,的值最小故选3、C【解析】是非奇非偶函数,在定义域内为减函数;是奇函数,在定义域内不单调;y=-x 3是奇函数,又在定义域内为减函数;非奇非偶函数,在定义域内为减函数;故选C4、B【解析】令,得,令,由,得或,作出函数的图象,结合函数的图象,即可求解【详解】由题意,令,得,令,由,得或,作出函数的图象,如图所示,结合函数的图象可知,有个解,有个解,故的零点个数为,故选B.【点睛】本题主要考查了函数的零点问题,其中令,由,得到或,作出函数的图象,结合函数的图象求解是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于基础题5、D【解析】∵点A(1,1)关于直线y=kx+b的对称点是B(﹣3,3),由中点坐标公式得AB的中点坐标为,代入y=kx+b得 ①直线AB得斜率为,则k=2.代入①得, .∴直线y=kx+b为 ,解得:y=4.∴直线y=kx+b在y轴上的截距是4.故选D.6、B【解析】令,则的图像如图所示,不经过第二象限,故选B.考点:1、指数函数图像;2、特例法解题.7、D【解析】样本,,,的总和为,样本,,,的总和为,样本,,,,,,,的平均数为 ,选D.8、D【解析】由可得出,根据题意得出,结合可得出关于和的方程组,解出这两个量,然后利用商数关系可求出的值.【详解】,则,由正余混弦的定义可得.则有,解得,因此,.故选:D.【点睛】本题考查三角函数的新定义,涉及同角三角函数基本关系的应用,根据题意建立方程组求解和的值是解题的关键,考查运算求解能力,属于基础题.9、A【解析】根据题意利用基本不等式分别判断充分性和必要性即可.【详解】若,因为,则,当且仅当时等号成立,所以充分性成立;取,因为,则,当且仅当时等号成立,即时,对任意的正数x,,但,所以必要性不成立,综上,“”是“对任意的正数x,”的充分非必要条件.故选:A.10、D【解析】根据两圆的圆心距和两半径的和与差的关系判断.【详解】因为圆与圆的圆心距为:两圆的半径之和为:,所以两圆相外切,故选:D二、填空题:本大题共6小题,每小题5分,共30分。
11、(1)(2)的值域为,单调递增区间为;(3)【解析】(1)取特殊点,列表,描点,连线,画出函数图象;(2)化简得到的解析式,进而求出值域,整体法求解单调递增区间;(3)整体法先得到,换元后得到在上有根,进而求出的取值范围.【小问1详解】作出表格如下:x0020-20在平面直角坐标系中标出以下五点,,,,,,用平滑的曲线连接起来,就是函数在区间上的图象,如下图:【小问2详解】,其中,由题意得:,解得:,故,故的值域为,令,解得:,所以的单调递增区间为:【小问3详解】因为,所以,则,令,则,所以方程在上有根等价于在上有根,因为,所以,解得:,故的取值范围是.12、【解析】结合正弦函数的性质确定参数值.【详解】由图可知,最小正周期,所以,所以.故答案为:.【点睛】本题考查由三角函数图象确定其解析式,掌握正弦函数的图象与性质是解题关键.13、【解析】求出二次函数的对称轴,即可得的单增区间,即可求解.【详解】函数的对称轴是,开口向上,若函数在区间是单调递增函数,则,故答案为:14、-1【解析】根据题中条件可先排除①,②两个图象,然后根据③,④两个图象都经过原点可求出a的两个值,再根据二次函数图象的开口方向就可确定a的值.【详解】∵b>0∴二次函数的对称轴不能为y轴,∴可排除掉①,②两个图象∵③,④两个图象都经过原点,∴a2﹣1=0,∴a=±1∵当a=1时,二次函数图象的开口向上,对称轴在y轴左方,∴第四个图象也不对,∴a=﹣1,故答案为:-1【点睛】本题考查了二次函数的图象和性质,做题时注意题中条件的利用,合理地利用排除法解决选择题15、【解析】先根据二倍角余弦公式将函数转化为二次函数,再根据二次函数性质求最值.【详解】所以令,则因此当时,取最小值,故答案为:【点睛】本题考查二倍角余弦公式以及二次函数最值,考查基本分析求解能力,属基础题.16、3【解析】由题意如图:根据平行线分线段成比例定理,可知,又因为,所以根据三角形相似判定方法可以知道∵为的中点∴相似比为∴∴故答案为3三、解答题:本大题共5小题,共70分。
解答时应写出文字说明、证明过程或演算步骤17、(1)(2)奇函数,证明见解析(3)【解析】(1)代入,得到,利用对数的运算即可求解;(2)先判断奇偶性,然后分析定义域并计算的数量关系,由此完成证明;(3)将已知转化为,求出在的最小值,即可得解.【小问1详解】,,即,解得,所以a的值为【小问2详解】为奇函数,证明如下:由,解得:或,所以定义域为关于原点对称,又,所以为奇函数;【小问3详解】因为,又外部函数为增函数,内部函数在上为增函数,由复合函数的单调性知函数在上为增函数,所以,又对于恒成立,所以,所以,所以实数的范围是18、 (1);(2).【解析】(1)利用诱导公式化简==;(2)由诱导公式可得,再利用同角三角函数关系求出即可试题解析:(1)(2)∵,∴,又第三象限角,∴,∴点睛:(1)三角函数式化简的思路:①切化弦,统一名;②用诱导公式,统一角;③用因式分解将式子变形,化为最简(2)解题时要熟练运用诱导公式和同角三角函数基本关系式,其中确定相应三角函数值的符号是解题的关键.19、(1)答案见解析(2)(3)答案见解析【解析】(1)取五个值,列表描点连线即可得出答案;(2)根据图象求出的范围,即可得出答案;(3)根据正弦函数最值即可得出答案.【小问1详解】列表如下:10-10020-20在直角坐标系中描点连线,如图所示:【小问2详解】当时,,所以,所以.所以在上的值域为【小问3详解】当时,取最大值2令,则当时,取最小值-2令,则所以使取得最大值时的取值集合为,且最大值为2取得最小值时的取值集合为,且最大值为-2.20、(1);(2)最大值为,此时.【解析】(1)利用二倍角公式以及辅助角公式可得,再由即可求解.(2)由(1)知,,令,即可求解.【详解】(1)由题设,函数的最小正周期是,可得,所以;(2)由(1)知,当,即时,取得最大值1,所以函数的最大值为21、(1)最小正周期,最大值为;(2)在单调递增,在单调递减.【解析】(1)由条件利用三角恒等变换化简函数,再利用正弦函数的周期性和最值求得的最小正周期和最大值;(2)根据,利用正弦函数的单调性,分类讨论求得的单调性.【详解】(1),则的最小正周期为,当,即时,取得最大值为;(2)当时,,则当,即时,为增函数;当时,即时,为减函数,在单调递增,在单调递减.【点睛】本题考查正弦函数的性质,解题的关键是利用三角恒等变换化简函数.。