当前位置首页 > 高等教育 > 习题/试题
搜柄,搜必应! 快速导航 | 使用教程  [会员中心]

自动控制原理胡寿松第四版课后答案

文档格式:DOC| 23 页|大小 617.51KB|积分 15|2022-08-24 发布|文档ID:142297281
第1页
下载文档到电脑,查找使用更方便 还剩页未读,继续阅读>>
1 / 23
此文档下载收益归作者所有 下载文档
  • 版权提示
  • 文本预览
  • 常见问题
  • 1-3解:系统的工作原理为:当流出增加时,液位降低,浮球降落,控制器通过移动气动阀门的 开度,流入量增加,液位开始上当流入量和流出量相等时达到平衡当流出量减小时,系 统的变化过程则相反希望液位流出量高度 液位高度控制器 气动阀 水箱+ 流入量-浮球图一1-4(1) 非线性系统(2) 非线性时变系统(3) 线性定常系统(4) 线性定常系统(5) 线性时变系统(6) 线性定常系统2-1 解:显然,弹簧力为 kx(t ) ,根据牛顿第二运动定律有:F (t ) − kx(t) = m移项整理,得机械系统的微分方程为:d 2 x(t )dt 2m d x(t ) + kx(t ) = F (t )dt 2对上述方程中各项求拉氏变换得:ms 2 X (s) + kX (s) = F (s)所以,机械系统的传递函数为:G(s) =X (s) =F (s)1ms 2 + k2-2 解一:由图易得:i1 (t )R1 = u1 (t ) − u2 (t ) uc (t ) + i1 (t )R2 = u2 (t ) duc (t ) i1 (t ) = Cdt由上述方程组可得无源网络的运动方程为:C ( R + R ) du2 (t ) u (t ) = CRdu1 (t ) u (t ) 1 2 dt+ 2 2 + 1dt对上述方程中各项求拉氏变换得:C (R1 + R2 )sU 2 (s) + U 2 (s) = CR2 sU1 (s) + U1 (s) 所以,无源网络的传递函数为:G(s) = U 2 (s) =U1 (s)1 + sCR21 + sC(R1 + R2 )解二(运算阻抗法或复阻抗法):U (s) 1+ R21 + R Cs 2 = Cs = 2 U (s) R + 1 + R1 + ( R + R )Cs1 1 21 Cs 22-5 解:按照上述方程的顺序,从输出量开始绘制系统的结构图,其绘制结果如下图所示:依次消掉上述方程中的中间变量 X 1 , X 2 , X 3 , 可得系统传递函数为:C(s) =R(s)G1 (s)G2 (s)G3 (s)G4 (s)1 + G2 (s)G3 (s)G6 (s) + G3 (s)G4 (s)G5 (s) + G1 (s)G2 (s)G3 (s)G4 (s)[G7 (s) − G8 (s)]2-6 解:① 将 G1 (s) 与 G1 (s) 组成的并联环节和 G1 (s) 与 G1 (s) 组成的并联环节简化,它们的等效传递函数和简化结构图为:G12 (s) = G1 (s) + G2 (s)G34 (s) = G3 (s) − G4 (s)② 将 G12 (s), G34 (s) 组成的反馈回路简化便求得系统的闭环传递函数为:2-7 解:C(s) =R(s)G12 (s)1 + G12 (s)G34 (s)= G1 (s) + G2 (s)1 + [G1 (s) + G2 (s)][G3 (s) − G4 (s)]由上图可列方程组:[E (s)G1 (s) − C (s)H 2 (s)]G2 (s) = C (s)R(s) − H1(s) C (s)G2 (s)= E (s)联列上述两个方程,消掉 E (s) ,得传递函数为:C(s) =R(s)G1 (s)G2 (s)1 + H1 (s)G1 (s) + H 2 (s)G2 (s)联列上述两个方程,消掉 C (s) ,得传递函数为:E(s) =R(s)1 + H 2 (s)G2 (s)1 + H1 (s)G1 (s) + H 2 (s)G2 (s)2-8 解:将①反馈回路简化,其等效传递函数和简化图为:0.4G (s) = 2s + 1 =1 + 0.4 * 0.52s + 115s + 3将②反馈回路简化,其等效传递函数和简化图为:1G (s) = s + 0.3s + 1 =5s + 321 + 0.45s + 4.5s+ 5.9s + 3.4(s + 0.3s + 1)(5s + 3)将③反馈回路简化便求得系统的闭环传递函数为:0.7 * (5s + 3)Θ o (s) = 5s 3 + 4.5s 2 + 5.9s + 3.4 =3.5s + 2.1Θi (s)1 + 0.7 * Ks(5s + 3)5s 3+ (4.5 + 3.5K )s 2+ (5.9 + 2.1K )s + 3.45s 3-3 解:该二阶系统的最大超调量:σ p = e−ζπ /1−ζ 2*100%当σ p= 5% 时,可解上述方程得:ζ = 0.69当σ p= 5% 时,该二阶系统的过渡时间为:t s ≈3ζwn所以,该二阶系统的无阻尼自振角频率 wn3-4 解:≈ 3ζt s= 30.69 * 2= 2.17由上图可得系统的传递函数:10 * (1 + Ks)C (s) =R(s)s(s + 2)1 + 10 * (1 + Ks)s(s + 2)== 10 * (Ks + 1)s + 2 * (1 + 5K )s + 10所以 wn =10 ,ζwn = 1 + 5K⑴ 若ζ= 0.5 时, K ≈ 0.116所以 K ≈ 0.116 时,ζ= 0.5⑵ 系统单位阶跃响应的超调量和过渡过程时间分别为:σ p = e−ζπ /1−ζ 2*100% = e−0.5*3.14 /1−0.52*100% ≈ 16.3%ts =3ζwn= 30.5 *≈ 1.910⑶ 加入 (1 + Ks ) 相当于加入了一个比例微分环节,将使系统的阻尼比增大,可以有效地减小原系统的阶跃响应的超调量;同时由于微分的作用,使系统阶跃响应的速度(即变化率)提高了,从而缩短了过渡时间:总之,加入 (1 + Ks ) 后,系统响应性能得到改善。

    3-5 解:由上图可得该控制系统的传递函数:C(s) =10K1R(s)二阶系统的标准形式为:C (s)R(s)s 2 + (10τ + 1)s + 10Kw 2= n s 2 + 2ζw s + w2n n所以n = 10K12ζwn = 10τ + 1由σ = e−ζπ /π1−ζ 2*100%t p =wn1 − ζ 2σ p = 9.5%t p = 0.5可得ζ = 0.6wn = 10K1ζ = 0.6wn = 7.85由 和2ζwn = 10τ + 1wn = 7.85可得:K1 = 6.16τ = 0.84t s ≈3ζwn= 0.643-6 解:⑴ 列出劳斯表为:因为劳斯表首列系数符号变号 2 次,所以系统不稳定⑵ 列出劳斯表为:因为劳斯表首列系数全大于零,所以系统稳定⑶ 列出劳斯表为:因为劳斯表首列系数符号变号 2 次,所以系统不稳定3-7 解:系统的闭环系统传递函数:K (s +1)C (s) =R(s)=s(2s +1)(Ts +1) =1 + K (s +1)s(2s +1)(Ts +1)K (s +1)K (s +1)s(2s +1)(Ts +1) + K (s +1)2Ts3 + (T + 2)s 2 + (K +1)s + K列出劳斯表为:s3 2T K +1s2 T + 2 Ks1 (K +1)(T + 2) − 2KT T + 2s0 KT > 0 ,T + 2 > 0 , (K + 1)(T + 2) − 2KT T + 2> 0 , K > 0T > 0K > 0 , (K + 1)(T + 2) − 2KT > 0(K +1)(T + 2) − 2KT = (T + 2) + KT + 2K − 2KT= (T + 2) − KT + 2K = (T + 2) − K (T − 2) > 0K (T − 2) < (T + 2)3-9 解:由上图可得闭环系统传递函数:C (s) =KK2 K3R(s) (1 + KK K a)s2 − KK K bs − KK K代入已知数据,得二阶系统特征方程:(1 + 0.1K )s2 − 0.1Ks − K = 0列出劳斯表为:s2 1 + 0.1K − Ks1 − 0.1Ks0 − K可见,只要放大器−10 < K < 0 ,系统就是稳定的。

    3-12 解:系统的稳态误差为:ess= lim e(t ) = lim sE (s) = lim sR(s)t →∞s→0s →0 1 + G0 (s)⑴ G0 (s) =10s(0.1s + 1)(0.5s + 1)系统的静态位置误差系数:K = lim G(s) = lim 10 = ∞p s →0 0s →0 s(0.1s + 1)(0.5s + 1)系统的静态速度误差系数:K = lim sG(s) = lim10s= 10v s →0 0s →0 s(0.1s + 1)(0.5s + 1)系统的静态加速度误差系数:K = lim s 2 G(s) = lim10s 2= 0a s→0 0s→0 s(0.1s + 1)(0.5s + 1)当 r (t ) = 1(t ) 时, R(s) = 1sess= lim s* 1 = 0当 r (t ) = 4t 时, R(s) =s→0 10 s1 +s(0.1s + 1)(0.5s + 1)4s 2e = lim s* 4 = 0.4ss s →0 s 2当 r (t ) = t 2 时, R(s) =1 + 10s(0.1s + 1)(0.5s + 1)2s 3ess= lims →01 +s * 2 = ∞ 10 s 3s(0.1s + 1)(0.5s + 1)当 r(t) = 1(t) + 4t + t 2 时, R(s) = 1 + 4 + 2s s 2 s 33-14 解:ess = 0 + 0.4 + ∞ = ∞由于单位斜坡输入下系统稳态误差为常值=2,所以系统为 I 型系统设开环传递函数 G(s) =Ks(s2 + as + b)⇒ K = 0.5 b闭环传递函数φ(s) = G(s) = K1 + G(s) s3 + as2 + bs + KQ s = −1 ± j 是系统闭环极点,因此s3 + as2 + bs + K = (s + c)(s2 + 2s + 2) = s3 + (2 + c)s2 + (2c + 2)s + 2c⎧K = 0.5b⎪K = 2c⎨b = 2c + 2 ⇒⎪⎩a = 2 + c⎧K = 2⎪a = 3⎨b = 4⎪⎩c = 1所以 G(s) =2 。

    s(s2 + 3s + 4)4-1jω [s] jω [s] k →∞k = 0×k →∞k = 00×σ k = 0×k →∞k →∞k = 0 σ0×(a) (b)jω [ s ]jω [s] σ× × 0 ×σ× 0×(c) (d)4-2j ω [ s ]×p 3 = − 10 ××p 1 = 0 σp 2 = 0p1 = 0,p2 = 0,p3 = −11. 实轴上的根轨迹 (−∞, −1) (0, 0)12. n − m = 33 条根轨迹趋向无穷远处的渐近线相角为ϕ 180°(2q + 1) = ±60°,180°a 3(q = 0,1)渐近线与实轴的交点为n m∑ pi − ∑ zii =1j =1 0 − 0 −1 1σ a =3. 系统的特征方程为n − m= = −3 31+G(s) = 1 +K = 0s2 (s +1)即 K = − s2 (s +1) = −s3 − s2dK = − 3s2 − 2s = 0dss(3s + 2) = 0根 s1 = 0(舍去)s2 = −0.6674. 令 s = jω代入特征方程1+G(s) = 1 +K = 0s2 (s +1)s2 (s +1) + K =0( jω )2 ( jω +1) + K =0−ω 2 ( jω +1) + K =0K − ω 2 − jω =0⎧K − ω 2 =0⎨⎩ω = 0ω=0(舍去)与虚轴没有交点,即只有根轨迹上的起点,也即开环极点p1,2 = 0在虚轴上。

    25-1G(s) =50.25s +1G( jω ) =50.25 jω +1A(ω ) =5 (0.25ω )2 +1ϕ(ω) = − arctan(0.25ω)输入 r(t) = 5 cos(4t − 30°) = 5 sin(4t + 60°)ω=4A(4) =5(0.25 * 4)2 +1= 2.5 2ϕ(4) = − arctan(0.25 * 4) = −45°系统的稳态输出为c(t ) = A(4) * 5 cos[4t − 30° + ϕ(4)]= 2.5 2 * 5 cos(4t − 30° − 45°)= 17.68 cos(4t − 75°) = 17.68 sin(4t +15°)sin α = cos(90° −α ) = cos(α − 90°) = cos(α + 270°)5-3或者,c(t ) = A(4) * 5 sin[4t + 60° + ϕ(4)]= 2.5 2 * 5 sin(4t + 60° − 45°)= 17.68 sin(4t +15°)1 1(2)G(s) =(1 + s)(1 + 2s)G( jω ) =(1 + jω )(1 + j 2ω )A(ω ) =1(1 + ω 2 )(1 + 4ω 2 )ϕ(ω) = − arctan ω − arctan 2ωϕ(ω) = − arctan ω − arctan 2ω = −90° arctan ω + arctan 2ω = 90°ω = 1/(2ω)ω 2 = 1/ 2A(ω ) =1 =(1 +1 / 2)(1 + 4 *1/ 2)2 = 0.473与虚轴的交点为(0,-j0.47)jY(ω)0 ω =∞ -j0.47ω = 01X (ω)ω1(3) G(s) =1s(1 + s)(1 + 2s)G( jω ) =1jω (1 + jω )(1 + j2ω )A(ω ) =ω1(1 + ω 2 )(1 + 4ω 2 )ϕ(ω) = −90° − arctan ω − arctan 2ωϕ(ω) = −90° − arctan ω − arctan 2ω = −180° arctan ω + arctan 2ω = 90°ω = 1/(2ω)ω 2 = 1/ 2A(ω ) =11/2 (1 +1/ 2)(1 + 4 *1/ 2)= 2 = 0.673与实轴的交点为(-0.67,-j0)-0.670ω = 0.707ωω = 0jY (ω)ω =∞ X (ω)(4) G(s) =1s2 (1 + s)(1 + 2s)G( jω ) =1( jω )2 (1 + jω )(1 + j 2ω )A(ω ) =ω 21(1 + ω 2 )(1 + 4ω 2 )ϕ(ω ) = −180° − arctan ω − arctan 2ωϕ(ω) = −180° − arctan ω − arctan 2ω = −270° arctan ω + arctan 2ω = 90°ω = 1/(2ω)ω 2 = 1/ 2A(ω ) =1 = 2 (1/ 2) (1 +1/ 2)(1 + 4 *1/ 2) 32 = 0.94与虚轴的交点为(0,j0.94)ω = 0.707ω = 0 ω0.940jY(ω)ω = ∞X (ω)25-4(2)ω1 = 0.5 ,ω2 = 1 , k = 1 ,υ = 0L (ω ) ( d B )00.01-20dB0.10.5-20dB /decω1 10-40dB /dec-40dB(3)ω1 = 0.5 ,ω2 = 1 , k = 1 ,υ = 1L (ω ) ( d B )-20dB /dec20dB -40dB /decω00.010.10.51 10-20dB-40dB-60dB /dec(4)ω1 = 0.5 ,ω2 = 1 , k = 1 ,υ = 2L (ω )(d B )60dB-40dB /dec40dB20dB -60dB /decω00.010.10.51 10-20dB-40dB-80dB /dec5-6G(s) =1s −1是一个非最小相位系统3G( jω ) = 1 =1 (−1 − jω ) =1 e j ( −180o +arctgω )jω −1 1 + ω 21 + ω 2G(s) =1s +1是一个最小相位系统G( jω ) = 1 =1 (1 − jω ) =1 e− jarctgωjω +1 1 + ω 21 + ω 25-8(a)ω = 0 −ω = ∞-1 0X (ω )ω = 0 +系统开环传递函数有一极点在 s 平面的原点处,因此乃氏回线中半径为无穷小量ε 的半圆弧 对应的映射曲线是一个半径为无穷大的圆弧:ω :0− → 0+ ;θ :-90°→ 0°→ +90°; ϕ(ω) :+90°→ 0°→ -90°N=P-Z, Z=P-N=0-(-2)=2闭环系统有 2 个极点在右半平面,所以闭环系统不稳定(b)jY (ω ) ω = 0−ω = 0+ω = ∞-1 0X (ω ) 4系统开环传递函数有 2 个极点在 s 平面的原点处,因此乃氏回线中半径为无穷小量ε 的半圆弧对应的映射曲线是一个半径为无穷大的圆弧:ω :0− → 0+ ;θ :-90°→ 0°→ +90°; ϕ(ω) :+180°→ 0°→ -180°N=P-Z, Z=P-N=0-0=0闭环系统有 0 个极点在右半平面,所以闭环系统稳定5-10K K 2.28K(1)G(s)H (s) = =Ts +1ϕ(ω)(°)12.28s +1=s + 2.28ω1 = 2.280°ω−90°ϕ (ω )G s H s = K1 = K1 = 2.28K(2)( ) ( )ϕ (ω )(°)s Ts +1s 12.28s +1s(s + 2.28)−90°ω1 = 2.28ω−180°ϕ (ω )K τ s +11K 0.5s +14K (s + 0.5)(3)G(s)H (s) = =s Ts +1 s 1=s (s + 2)2 2 2s +12L (ω )( d B )-40dB /dec-20dB /deca ωb 0 0.51 2-40dB /dec520 lg 1= a −20 lg K + 20 lg 1= 40 lg 1−20 lg K = 20 lg 10.520 lg(K )−1 = 20 lg 20.5 0.5K = 1/ 2 = 0.50.5G(s)H (s) = 4K (s + 0.5) = 2(s + 0.5)s2 (s + 2)s2 (s + 2)−90°ϕ(ω)(°)ω1 = 0.5ω2 = 2ω−180°ϕ (ω )5-11ω = 0−jY (ω)ω = +∞0 ω = −∞(-1,j0)X (ω)ωω = 0+G(s)H (s) =Ks(s +1)(3s +1)⇒ G( jω )H ( jω ) =Kjω ( jω +1)(3 jω +1)ϕ(ω ) = −90° − arctan ω − arctan 3ω = −180° arctan ω + arctan 3ω = 90°ω = 1/(3ω)ω 2 = 1/ 3A(ω ) =K1 /3 (1 +1 / 3)(1 + 9 *1/ 3)= 3 K = 14Kc = 4/3 = 1.3366-2 (1)6 ω 2G(s) = = n s(s2 + 4s + 6)s(s2 + 2ξω s + ω 2 )ω 2 = 6ω = 6 =2.45, 2ξω =4 ξ =4 = 2= 0.816n n n2ωn 6K = 1所以,ωc = 1 20lgK = 0⎛ 2ξω / ωϕ (ω ) = −90° − arctg c n⎞ ⎛ 2 * 0.816 *1/ 2.45 ⎞= −90° − arctgc ⎜ 1 − ω 2 / ω 2 ⎟ ⎜1 −1/ 2.452 ⎟⎝ c n ⎠ ⎝ ⎠= −90° − arctg ⎛ 2 * 0.816 *1 / 2.45 ⎞ = −90° − arctg ⎛ 0.666 ⎞ = −90° − arctg 0.7995⎜ 1 −1 / 2.452⎟ ⎜ 0.833 ⎟⎝ ⎠ ⎝ ⎠= −90° − 38.64° = −128.64°γ = 180° + ϕ (ωc ) = 180° −128.64° = 51.36°L(ω )(dB)50403020100-10-20-30-400.01-20dB /dec0.1ωn1 2.45ω10-60dB /dec(2)ω1 = 1,ω2 =1/0.2=5⎛ 2ξω / ωϕ (ω ) = −90° − arctg c n⎞ ⎛ ω ⎞ ⎛ ω ⎞+ arctg c − arctg cc ⎜ 1 − ω 2 / ω 2 ⎟ ⎜ ω⎟ ⎜ ω ⎟⎝ c n ⎠⎝ 1 ⎠ ⎝ 2 ⎠= −128.64° + arctg ⎛ 1 ⎞ − arctg ⎛ 1 ⎞ = −128.64° + 45° −11.31° = −94.95°⎝ ⎠ ⎝ ⎠γ = 180° + ϕ (ωc ) = 180° − 94.95° = 85.05°1课后答案网 L(ω) (dB )50403020100-10-200.01-20dB /dec0.1ωn1 2.4520dB /decG cω5 10-30-40-40dB /dec -60dB /dec-60dB /dec6-5 (1)G(s) =10s(0.5s +1)(0.1s +1)ω = 1, 20 lg K =20lg10=20dBω1 = 1/ 0.5 = 2,ω2 = 1 / 0.1 = 10ω1 = 2时, L(ω1 ) = 20 − 20(lg 2 − lg1) = 20lg10 − 20 lg 2 = 20lg5 = 14dBω2 = 10时, L(ω2 ) = 14 − 40(lg10 − lg 2) = −13.96dB所以,ω1 < ωc < ω2L(ω1 ) = 40(lg ωc − lg 2) = 40(lg ωc / 2) = 14dBωc = 4.48ϕ (ωc ) = −90° − arctg 0.5ωc − arctg 0.1ωc = −90° − arctg 2.24 − arctg 0.448= −90°− 65.94°− 24.13° = −180.07°γ = 180° + ϕ (ωc ) = 180° −180.07° = −0.07°L (ω )(dB)50403020100-10-20-30-400.1-20dB /dec1 2-40dB /decω c 10-60dB /decω1002(2)G(s)Gc (s) =10(0.33s +1)s(0.5s +1)(0.1s +1)(0.033s +1)ω = 1, 20 lg K =20lg10=20dBω1 = 1 / 0.5 = 2,ω2 = 1/ 0.33 = 3,ω3 = 1 / 0.1 = 10,ω4 = 1/ 0.033 = 30ω2 = 3时, L(ω1 ) − L(ω2 ) = 40(lg ω2 − lg ω1 ) 14 − L(ω2 ) = 40(lg 4.35 − lg 2)L(ω2 ) = 7dBL(ω3 = 10) − L(ω2 = 3) = −20(lg ω3 − lg ω2 ) = −3.37dB所以ω2 < ωc 2 < ω3L(ω2 ) = 20(lg ωc 2 − lg ω2 ) = 20(lg ωc 2 / 3) = 7dBωc 2 = 6.72ϕ (ωc ) = −90° − arctg 0.5ωc 2 − arctg 0.1ωc 2 + arctg 0.33ωc 2 − arctg 0.033ωc 2= −90° − arctg 3.36 − arctg 0.672 + arctg 2.22 − arctg 0.222= −90°− 73.43°− 33.90°+ 65.75°−12.52° = −144.1°γ 2 = 180° + ϕ (ωc 2 ) = 180° −144.1° = 35.9°L(ω )(dB)504030 -20dB /dec20100-40dB /decωc 220dB /decG c10 ω-10-200.11 2 3ωc130G cG100-30-40-20dB /dec-40dB /dec -60dB /dec-60dB /dec校正环节为相位超前校正,校正后系统的相角裕量增加,系统又不稳定变为稳定,且有一定的稳定裕度,降低系统响应的超调量;剪切频率增加,系统快速性提高;但是高频段增益提 高,系统抑制噪声能力下降。

    点击阅读更多内容
    卖家[上传人]:xtt9527
    资质:实名认证