当前位置首页 > 学术论文 > 毕业论文
搜柄,搜必应! 快速导航 | 使用教程  [会员中心]

潜水轴流泵设计说明书

文档格式:DOCX| 46 页|大小 134.14KB|积分 20|2023-03-11 发布|文档ID:193600469
第1页
下载文档到电脑,查找使用更方便 还剩页未读,继续阅读>>
1 / 46
此文档下载收益归作者所有 下载文档
  • 版权提示
  • 文本预览
  • 常见问题
  • si氧邮 Qnl30m岑 商ffiH n 3.7m ®n n 2900l7m5'1・ 1本设计系OOOOOOOOO轴流泵是一种高比转数的水泵,一般比转数气^500 -1000 .当气大于500时,泵一 般设计成轴流式轴流泵属于低扬程、大流量泵,一般性能范围为:扬程1 ~2m;流量0.3 -0.65m3/S轴流泵结构简单,重量轻,主要用于扬程低,流量大的场合中、小型轴流泵的结构油 吸入喇叭口、叶轮、导流器、弯管等组成,叶轮一般采用不可调式,这种结构叶轮非常简单 小型轴流泵的驱动电机可与泵连在一起,使用和安装均非常方便,缺点是效率曲线的高效区 比较窄,泵比转数越高,高效区越窄对于大型轴流泵,可将叶轮设计成可调式的,以增加 水泵的高效区在本设计中,设计参数:流量Q=130m3/h,扬程H = 3.7m,配套功率P配= 2.2KW ,属于小型泵,叶轮采用不可调式比转数n 代入参数计算得〃=754 ,古攵泵s H 3 4 s的结构为轴流式作为潜水泵,需要在水下工作,为了安装和检修的方便,把泵和电机设计 成一体,用一根轴连接汽蚀方面,泵在水下工作,一般不会发生汽蚀,可以不作要求2, 叶轮的设计(1 )轴流泵的轮毂比djD轮毂用来固定叶片,在结构和强度上应保证安装叶片要求。

    减小轮毂比djD,可减少 水力摩擦,增加过流面积,有利于抗汽蚀性能的改善但过分的减少轮毂比,会增加叶片的 扭曲,偏离设计工况时,会造成流动紊乱,在叶片进出口形成二次回流,使效率下降,高效 范围变窄轴流泵的轮毂比d「D根据比转数确定:ns500550600800d -D h0.60.550.50.4根据设计参数计算出的n尸754,试取djD =0.452)轴流泵的叶片数Z轴流泵的叶片数Z可以根据比转数气来选定,一般Z=3~6,比转数高,叶片负荷轻, 叶片数可少一些比转数气二500~600,叶片数取6~5;比转数气二700~900,叶片数 取4个据此,本设计中取叶片数Z = 43 )叶轮外径D叶轮的当量直径D0的大小决定叶轮前轴面速度吃0的大小,在转速一定情况下,吃0的 大小与叶片前来流速度(相对速度)与圆周之间夹角g 0大小有关p 0影响着叶片中翼型的 安放角g.而g°太小叶片排挤系数就小,因此需要控制P0角为控制P0角在一定范围,鲁特捏夫建议按叶轮进口出轴面速度吃0计算当量直径D 他建议取轴面速度吃0为:v 0 = (0.06 〜0.08)%;况计算出轴面速度后可以计算当量直径:4Qv = m 0 兀 D 204Q•兀V 2m0代入数据得:V = 0.07^13^ X 29002 =4.7m/s m0 33600;4 x 0.036\,‘3.14 x 4.7=0.99m因此,叶轮外径 D = D0 =110mmv'1 - (d D)2h轮毂直径 dh =身 x D =0.45x 0.11 = 50mm(4) 估算效率参照同类型潜水轴流泵,并根据设计要求,估选效率门=0.75,将该效率分配下去,得:容积效率 门=0.98机械效率 门=0.95水力效率 门=0.81121098 1 D/1\ K 1 R80 — ! D W 匚 L R27 :1i111_11i一IV W III II I叶轮轴面投影及轴面流线此效率只是初步估计,仅用于设计过程中的计算。

    5) 确定计算截面本设计中取5个截面,内外截面分别与轮缘和轮毂 留有一定距离,见图一以方便用样板检查所取各截面 见下表:截面InmIVV直径(mm)54678093106所取截面见右图6) 确定轴面速度^”和速度环量r的分布规律轴面速度 V =——Q——,代入参数计算,得m - (D2 -d2)4、 hv = = 4.77 m / sm : (0.112 - 0.052)0.036速度环量r2 =蟹’代入数值’得 hr gH 9.81 X 3.7r = —= = 0.927m 2/s2 n 2900 t60 ^ h B X 0.81,则绕翼型环量:r =「2-「1 = 0.232m 2/sZ本设计为小型泵,为提高效率可以选用非等环量分布设计,但可能会出现各参数相差较 大的情况,无法获得满意的结果事实证明,采用等环量和等轴面速度设计,各截面计算参 数与非等环量情况相差不大,且结果也能令人满意,方法简单故本设计中采用等环量和等轴面速度设计7) 速度三角形的计算叶片进出口速度三角形如右图所示假设v=0,速度三角形各分量计算如下: u1兀Dnu = 60速度三角形V =——u 2 兀D=Jv2 + (" 一(V + V )/2)2p = arctgV m u - Vu1 + Vu22下面是各截面的速度三角形的计算:截面I3.14 x 0.054 x 2900co6060=8.20m / sco0.9273.14 x 0.054=5.47 m / syV2 + (u 一(V + V )/2)2u1,■4.772 + (8.2 -5.47)2=7.25m / s= arctg截面口= arctg4.77■ul8.2 一5.473.14 x 0.067 x 2900=41.12。

    u=6060=10.17m / su2co0.9273.14 x 0.067= 4.41m / si'V2 + (u 一 (V + V )/2)2,■4.772 + (8.2 —4.41)2 = 9.28m / sco= arctg截面皿+V= arctg4.77u—8.2 —4.41=30.92D n60603.14 x 0.08 x 2900 / =12.14m / s爵27 = 3.72m / s3.14 x 0.08、;V2 + (u -(V + V )/2)2\:'4.772 + (8.2 -3.72、)211.31m/s=arctg=arctg4.77④截面IV8.2 —3.723.14 x 0.093 x 290060600.9273.14 x 0.093=24.8914.11m / s=3.17 m / sJv 2 + (u - (v + v )/2)2,■4.772 + (8.2 —3.17)213.4m/s= arctg+v= arctg4.77⑤截面vu—-u18.2 —3.173.14 x 0.11 x 2900u=6060=16.09m / su20.9273.14 x 0.11=2.79m / sylv2 + (u - (v + V )/2)2= arctg+v= arctgu—-u1=20.85。

    [,4772 + (8.2 —4.778.2 —2.792.79)215.45m/s=17.988)叶栅间距t截面I3.14 x 54截面口t== 42.4mm3.14 x 67=52.6mm截面皿‘=若=V = 62.W截面IV兀 D 3.14 X 93 “t = ―4 = = 73mmZ 4截面V兀 D 3.14 x 110 sct = 一= — - = 83.2mmZ 4以上为叶轮设计的前期计算,无论采用升力法还是圆弧法设计该泵,均需进行以上部分的 计算以下分别用升力法和圆弧法对叶轮进行设计一、升力法设计叶轮升力法设计轴流泵计算表序号计算公式单位计算截面InmVV1Dm0.0540.0670.080.0930.1062u =兀 Dn: 60m/8.27.2510.1712.1414.113000004r = 2ngH2 ①叩 hm2/s0.9270.9270.9270.9270.9275m,av 兀(D2 -d 2)hm/4.774.774.774.774.776v 2 = r/(兀 d)m/5.474.413.723.172.79s7w =(V2 +(u-(V1 +V2)/2)2m/7.259.2811.3113.415.458匕—arctg Vm+ V U — —u1 u2-2°41.1230.9224.8920.8517.989t =兀 DjZmm42.452.662.87383.210Z4444411气〃(选取)0.120.1020.0850.06750.0512翼型49049049049049013人(假定)°1111114lit1.10.9750.850.7250.615气1.1570.7110.37230.29690.41216C”1.340.9230.6340.45240.58117C = 5.62 康Ah 454854854854854818lmm46.651.353.452.949.919T”mm5.595.234.453.282.5205 (取定)5.65.24.53.32.5218 /14.185.637.107.294.3022X = arctg(0.012+ 0.068/1)°1.11.040.980.90.8623Aa°5.643.841.044-0.1052.3524P =0 + Aa°46.7634.7625.9321.520.33根据上表中的计算结果,对叶片进行绘型。

    根据490翼型的结构,按比例计算翼型的尺寸,列入表格,即得翼型的绘型表绘型 表见下一页绘型表中参数的意义见下图:绘型表中各参数意义绘型计算表计算截面490翼型Inml(mm)46.551.553.46max(mm)5.65.24.5§max/l(%)12.010.18.4序号x/l(%)yyuyo-yuxyPyixyeyixyeyix10.002200.001.2731.2730.001.1821.1820.001.0231.0230.0021.253.60.852.750.582.2910.5410.642.1270.5020.671.8410.4350.6632.504.60.54.11.162.9270.3181.292.7180.2951.342.3520.2561.3345.005.950.155.82.333.7860.0952.583.5160.0892.673.0430.0772.6557.507073.494.4550.0003.864.1360.0004.013.5800.0003.98610.007.707.74.654.9000.0005.154.5500.0005.343.9380.0005.30715.008.650.28.456.985.5050.1277.735.1110.1188.014.4230.1027.95820.009.20.48.89.305.8550.25510.305.4360.23610.684.7050.20510.60930.009.60.958.6513.956.1090.60515.455.6730.56116.024.9090.48615.901040.009.050.88.2518.605.7590.50920.605.3480.47321.364.6280.40921.201150.008.550.87.7523.255.4410.50925.755.0520.47326.704.3720.40926.501260.007.450.66.8527.904.7410.38230.904.4020.35532.043.8100.30731.801370.006.050.45.6532.553.8500.25536.053.5750.23637.383.0940.20537.101480.004.40.154.2537.202.8000.09541.202.6000.08942.722.2500.07742.401590.002.502.541.851.5910.00046.351.4770.00048.061.2780.00047.701695.001.450.051.444.180.9230.03248.930.8570.03050.730.7410.02650.3517100.00.150.15046.500.0950.09551.500.0890.08953.400.0770.07753.00二、圆弧法设计各参数的计算结果列在表中,具体见下表:圆弧法设计轴流泵计算表序号常量单 位截®InmIVV1rm0.0270.03350.040.04650.0532l/t (取值)10.9250.850.7750.736 /10.14290.1060.0830.06320.0484门h (取值)0.80.80.80.80.857 2" ll = z tm0.0420.0490.0530.0530.0586.6,6 = — l lmm65.24.43.62.87T0 = t /111.0811.17651.29031.428682 -63mm43.4672.9332.41.8679七=60gH 加 h nm2 /s0.9270.9270.9270.9270.92710r = r^ / zm2 /s0.2320.2320.2320.2320.23211u =兀 rn /30m/ s8.210.1712.1414.1116.0912v =「/ 2兀 rm/5.474.413.723.172.79s13w = u - v / 2m/ s5.4657.96510.2812.52514.69514y = 1.237g/(d2 -d「)m/ s4.774.774.774.774.7715180 r _兀 l316.5271.3250.8233.2229.2第一次逼近计算:第一次逼近计算主要是为了求得国,如果M < 1°,则说明计算结果理想,不用修 正。

    事实上,本次计算结果除了截面I,均很好的符合了要求,不需要进行修正序号计算公式单位截面InmIVV16tan p = v jw0.8730.5990.4640.3810.32517P00°41.1230.9224.8920.8517.9818sin P000.65760.51380.42090.35600.308719—8 /sin P3 2而 -0.14350.12830.11600.09240.072720W = 1 - 3 8 x 2^-《sin P0.85650.87170.88900.90760.927321v如mm/s5.5695.4725.3665.2605.14422v : ktan p '= ——8 Wu1.0190.6870.5220.4200.35023_ Ipco45.5434.4927.5622.7619.2924cos p '0.7000.8240.8870.9220.94425w =^^ 8 cos pcom/s7.8079.66611.5913.5815.57265.73 riw 0040.5428.0721.617.1714.7227L气,匕')1.461.641.821.861.8928(26)Y _(27)°27.7617.1211.879.237.7929Aa气,叮,Y)°2.800.980.720.540.4830P =。

    Aa°48.3435.4728.2823.3019.77下面是翼型骨线的几何参数及水力效率的计算:序号单位截面计算项曰InmIVV31R = l / 2sin ymm49.792.2143197.3237.432h = l (1 - cos y )/2 sin ymm4.73.32.52.11.833c = 2r / w 11.4150.97970.75540.59940.513834人=0.63Cys0.89140.61720.47590.37760.323735A 7 v 2 +人 w 2Ah = 0—2 gm5.255.135.285.435.81365.62〃JQC =3Ah 489190788886982637h /10.1120.0670.0470.0370.03138. _ __5 一 ―tan X = 0.012+ 0.02—+ 0.0810.02380.01950.01740.01620.015439X°1.361.120.9980.9290.88540=i w sin X1 u sin( P +X)co0.9670.9650.9620.9580.954x/l (mm)S/8 max(%)0.000.01.2524.22.5033.45.0046.410.0063.120.0086.430.0093.640.0098.850.0098.060.0089.570.0076.080.0056.890.0031.695.0017.2100.001.0几何参数的意义㈢叶片绘型根据上表的计算结果,可以得到翼型的骨线。

    对翼型 进行加厚在本设计中,取最大厚度在0.451处,并取较小 的头部圆角,以获得良好的汽蚀性能和能量性能加厚规律 见右表绘型表见下页,表中各几何参数的意义见下图圆弧法叶片绘型表计算截面InmIVl(mm)42.049.053.057.06max(mm)6.05.24.43.6序号x/l( mm)6/6 max(%)p = 49.7p = 92.2p = 143p = 197x6x6x6x10.000.00.000.0000.000.0000.000.0000.0021.2524.20.531.4520.611.2580.661.0650.7132.5033.41.052.0041.231.7371.331.4701.4345.0046.42.102.7842.452.4132.652.0422.85610.0063.14.203.7864.903.2815.302.7765.70720.0086.48.405.1849.804.49310.603.80211.40830.0093.612.605.61614.704.86715.904.11817.10940.0098.816.805.92819.605.13821.204.34722.801050.0098.021.005.88024.505.09626.504.31228.501160.0089.525.205.37029.404.65431.803.93834.201270.0076.029.404.56034.303.95237.103.34439.901380.0056.833.603.40839.202.95442.402.49945.601490.0031.637.801.89644.101.64347.701.39051.301595.0017.239.901.03246.550.89450.350.75754.1516100.001.042.000.06049.000.05253.000.04457.00(9 )叶片绘型① 画翼型展开图 根据叶片绘型表的数据,将翼型加厚,得到各截面的翼型图。

    ② 确定叶片旋转轴线位置 取距离翼弦进口 0.4/处的骨线上的点作为旋转中心水平线必要时可以适当偏离骨线③ 作叶片轴面投影图 做各翼型的水平中心线,将翼型进出口端点到中心水平线 的纵坐标方向距离,移到轴面图中心线的两侧,光滑连接各点得到叶片轴面投影的进出口 边进出口边应该为光滑的曲线④ 作轴面投影和木模截线 在轴面投影图中,作一组垂直轴线的木模截面,按各 截线间的距离画到各翼型展开图中同时在各翼型中画出一组竖线,竖线间水平距离等于 对应半径截面io°中心角的弧长(260)w将各翼型图中水平线1,2, 3……与翼型工作面及背面交点,按所在角度位置用插入 点法插入到平面图中相应的角度位置,分别光滑地连接,得到工作面的木模截线(实线) 和背面木模截线(虚线),设计中要求木模截线光滑有规律变化详细见叶片木模图,在此不赘述3. 导叶的设计轴流泵的导叶作用是消除液体环量,转换速度能为压力能本设计中,采用流线法设计 导叶为了减少水泵的整体长度,本设计采用将导叶与扩散管合为一体的方案,在此我们称之 为导流壳,详见零件图的导流壳部分为减少损失,导流壳的扩散角为6〜10°,本设计因 水泵尺寸小,仅取为2°。

    导叶进口边应该与叶轮出口边平行,本设计尽量以此为原则,略 微有些偏离导叶和叶轮间距离取6 〜8mm叶片数取5个流线法设计导叶的步骤为:① 绘制导叶的轴面投影图;② 分流线 导叶有锥度,流面为锥面根据经验,以圆柱面代替,误差不大为简便 起见,本设计即以圆柱面代替锥面;③ 计算各流面叶片进出口安放角气和气由进口速度三角形,rga3 二七3* 3式中,V 3——导叶进口轴面速度,V 3 = ——-—— m3 m3 - (D 2 - d 2)4 3 h一 zs中3——叶片进口排挤系数,W 3 = 1 - 芬3式中,D3 —计算流面的进口直径;S——导叶进口圆周方向厚度,S = —土u 3 u 3 sin a3式中,s 3——计算流面导叶进口的流面厚度;a 3 导叶进口安放角;七3——导叶进口处圆周分速度,按七3 R3=七2 R2计算本设计,先选定93,然后确定出a3根据确定出的a3求出中3,然后与选定值比较,进行 校核叶片出口角a 4一般取80〜90本设计中取a 4 = 90④ 确定叶栅稠密度/本设计参考类似设计取定叶栅稠密度根据对流道扩散角的校核,满足扩散角为6〜10流道扩散角的校核公式:8 t -1 sin atg — = 32 2/8——流道扩散角。

    ⑤ 导叶高度导叶高度e = lsin以3 *以彳2 本设计取先确定e,定出l,再校核扩散角导叶高度 e = (0.3 〜0.4)D = 33 〜44mm,取e = 40mm校核满足扩散角要求⑥ 确定导叶骨线半径导叶骨线半径R = cos a 一 cos a⑦ 翼型加厚本设计取翼型0.41除厚5,以翼型骨线上的点为圆心画圆;翼型头部以0.58为半径画 圆最后以相切圆弧连接得到翼型不同截面5的取值:截面InmIVV5 /(mm)4.03.53.02.52.0⑧ 导叶绘型导叶绘型包括画轴面图,翼型展开图和平面展开图绘图过程再本说明书中从略,详见导叶木模图和叶轮设计部分一样,各参数的计算也已经列在表中,见下一页的表格,各参数的意义见下图e导叶几何参数的意义导叶设计计算一览表序号计算公式单 位截®r1r2r3r4r51rm0.02700.03350.04000.04650.0532r gHV = = tu 2 2 兀 r u2m/s5.474.413.723.172.793W 3 (假定)0.850.870.890.910.934tan a ' - Vm 33 v W1.0261.2411.4421.6541.8385a3°45.7351.1855.2358.8061.466取a3°46.749.453.656.859.47s (选取)3mm444448ss =——3— u 3 sin a3mm5.505.274.974.784.659zd(选取)5555510t - n D Zmm33.942.150.258.466.611W — -3 ^u3-3 t30.8370.8750.9010.9180.93012a (取值)4909090909013l sin(45o + a 项2mm4342.642.141.741.514R - - / sin(45° - 土) 2/ 2mm58.361.467.87378.6至此,导叶设计完毕。

    以上为水力设计部分,下面转入水泵的结构设计4 .轴流泵的结构设计(1) 概述本设计为小型潜水轴流泵,电机为湿式的,且采用通用轴,这样再工艺、装配上都非常 简便泵为上泵式,主要零件由进水段,叶轮,导叶体,接头和轴套等,工艺主要是铸造本设计中,对叶轮、导叶体、和轴套的加工要求较高,其他零件要求一般本结构设计以提高水泵效率为目的2) 叶轮作为泵的能量转换部件泵的效率主要取决于叶轮的效率故需要提高叶轮的制造要求, 特别是过流部件叶轮与轴通过键来联结,为防止叶轮的轴向移动,叶轮选用螺母锁紧3) 进水段进水段的作用是将水平稳的引向叶轮,以减少损失;另外,进水段还起到支撑泵整体重 量的作用,因此在设计中主要考虑以下两个方面:① 为提高能量性能,尽量使水流速度平缓,故要求9的转弯光滑本设计采取的是 将进水段设计为一段圆弧,并将支撑筋的头部和尾部进行修圆② 由于进水段还起到支撑重量作用并且还要承受水流的冲击要对支撑筋进行加厚 为保守起见,本设计取支撑筋偏厚,保证强度满足要求4) 导流壳导叶的作用是消除环量,将动能转换成压能,以减少液体出口的水力损失根据实际经 验,导叶对效率的影响微乎其微,故对其要求不是很严格。

    为了使结构紧凑,在本设计中,把导叶和扩散断设计成一个整体,即导流壳5) 接头接头仅仅使为了联结水管,能够满足所要求的出口直径即可,对其没什么特殊要求以上各部件的尺寸详见零件图其他辅助部件,诸如轴瓦,油封,进水网罩等等,在设计中根据具体情况决定,在此不 赘述参考文献1. 查 森编:《叶片泵原理及水力设计》,第1版,北京,机械工业出版社,19882. 关醒凡编著:《现代泵技术手册》,北京,宇航出版社,19953. 镇江农机学院翻印资料:轴流式水泵设计计算资料汇编4. 查 森编著:《离心式和轴流式水泵》,中国工业出版社,19615. 丁成伟主编:《离心泵和轴流泵》,第1版,北京,机械工业出版社,19816. 北京有色冶金设计研究院主编,《机械设计手册》,第3版,北京,化学工业出版社,19937. 王之利,王大康主编:《机械设计综合课程设计》,北京,机械工业出版社,20038. 西北工业大学工程制图教研室编:《画法几何及机械制图》,西安,陕西科学技术出版社,19989. 甘永立主编:《几何量公差与检测》,第7版,上海,上海科学技术出版社,200510. 西北工业大学机械原理及机械零件教研室编著:《机械设计》,第7版,北京,高等教育出版社,2001目录设计任务书设计参数 (1)1. 概述 —(1)2 .叶轮的设计 "—(1)一. 升力法设计叶轮 (6 )二. 圆弧法设计叶轮 (21)3 .导叶的设计 "―(26 )4 .轴流泵结构设计 "―(29 )后记 —(30 )参考文献 "―(31)付:外文翻译电火花加工电火花加工法对加工超韧性的导电材料(如新的太空合金)特别有价值。

    这些金属很难 用常规方法加工,用常规的切削刀具不可能加工极其复杂的形状,电火花加工使之变得相对 简单了在金属切削工业中,这种加工方法正不断寻找新的应用领域塑料工业已广泛使用 这种方法,如在钢制模具上加工几乎是任何形状的模腔电火花加工法是一种受控制的金属切削技术,它使用电火花切除(侵蚀)工件上的多余 金属,工件在切削后的形状与刀具(电极)相反切削刀具用导电材料(通常是碳)制造 电极形状与所需型腔想匹配工件与电极都浸在不导电的液体里这种液体通常是轻润滑油 它应当是点的不良导体或绝缘体用伺服机构是电极和工件间的保持0.0005~0.001英寸 (0.01~0.02mm)的间隙,以阻止他们相互接触频率为20000Hz左右的低电压大电流 的直流电加到电极上,这些电脉冲引起火花,跳过电极与工件的见的不导电的液体间隙在 火花冲击的局部区域产生了大量的热量,金属融化了,从工件表面喷出融化金属的小粒子 不断循环着的不导电的液体,将侵蚀下来的金属粒子带走,同时也有助于驱散火花产生的热 量在最近几年,电火花加工的主要进步是降低了它加工后的表面粗糙度用低的金属切除 率时,表面粗糙度可达2 — 4vin.(0.05 — 0.10vin)。

    用高的金属切除率[如高达 15in3/h(245.8cm3/h)]时,表面粗糙度为 1000vin.(25vm)需要的表面粗糙度的类型,决定了能使用的安培数电容,频率和电压值快速切除金属 (粗切削)时,用大电流,低频率,高电容和最小的间隙电压缓慢切除金属(精切削)和需 获得高的表面光洁度时,用小电流高频率,低电容和最高的间隙电压与常规机加工方法相比,电火花加工有许多优点1 .不论硬度高低,只要是导电材料都能对其进行切削对用常规方法极难切削的硬 质合金和超韧性的太空合金,电火化加工特别有价值2. 工件可在淬火状态下加工,因克服了由淬火引起的变形问题3 .很容易将断在工件中的丝锥和钻头除4.由于刀具(电极)从未与工件接触过,故工件中不会产生应力5 .加工出的零件无毛刺6.薄而脆的工件很容易加工,且无毛刺7 .对许多类型的工件,一般不需第二次精加工8 .随着金属的切除,伺服机构使电极自动向工件进给9 .一个人可同时操作几台电火花加工机床10. 能相对容易地从实心坯料上,加工出常规方法不可能加工出来的极复杂的形状11. 能用较低价格加工出较好的模具12. 可用冲头作电极,在阴模板上复制其形状,并留有必须的间隙。

    Electrical discharge machiningElectrical discharge machining has proved especially valuable in the machining of super-tough, electrically conductive materials such as the new space-age alloys. These metals would have been difficult to machine by conventional methods, but EDM has made it relatively simple to machine intricate shapes that would be impossible to produce with conventional cutting tools. This machining process is continually finding further applications in the metal-cutting industry. It is being used extensively in the plastic industry to produce cavities of almost any shape in the steel molds. Electrical discharge machining is a controlled metal removal technique whereby an electric spark is used to cut (erode) the workpiece, which takes a shape opposite to that of the cutting tool or electrode. The cutting tool (electrode) is made from electrically conductive material, usually carbon. The electrode, made to the shape of the cavity required, and the workpiece are both submerged in a dielectric fluid, which is generally a light lubricating oil. This dielectric fluid should be a nonconductor (or poor conductor) of electricity. A servo mechanism maintains a gap of about 0.0005 to 0.001 in. (0.01 to 0.02 mm) between the electrode and the work, preventing them from coming into contact with each other. A direct current of low voltage and highamperage is delivered to the electrode at the rate of approximately 20 000 hertz (Hz). These electrical energy impulses become sparks which jump the dielectric fluid. Intense heat is created in the localized area of the park impact, the metal melts and a small particle of molten metal is expelled from the surface of the workpiece . The dielectric fluid, which is constantly being circulated, carries away the eroded particles of metal and also assists in dissipating the heat caused by the spark.In the last few years, major advances have been made with regard to the surface finishes that can be produced. With the low metal removal rates, surface finishes of 2 to 4 um. (0.05 to 0.10um) are possible. With high metal removal rates finishes of 1 000uin. (25um) are produced.The type of finish required determines the number of amperes which can be used, the capacitance, frequency, and the voltage setting. For fast metal removal (roughing cuts), high amperage, low frequency, high capacitance, and minimum gap voltage are required. For slow metal removal (finish cut) and good surface finish, low amperage, high frequency, low capacitance, and the highest gap voltage are required.Electrical discharge machining has many advantages over conventional machining processes.1. Any material that is electrically conductive can be cut, regardless of its hardness. It is especially valuable for cemented carbides and the new supertough space-age alloys that are extremely difficult to cut by conventional means.2. Work can be machined in a hardened state, thereby overcoming the deformation caused by the hardening process.3. Broken taps or drills can readily be removed from workpieces.4. It does not create stresses in the work material since the tool (electrode) never comes in contact with the work.5. The process is burr-free.6. Thin, fragile sections can be easily machined without deforming.7. Secondary finishing operations are generally eliminated for many types of work.8. The process is automatic in that the servomechanism advances the electrode into the work as the metal is removed.9. One person can operate several EDM machines at one time.10. Intricate shapes, impossible to produce by conventional means, are cut out of a solid with relative ease.11. Better dies and molds can be produced at lower costs.12. A die punch can be used as the electrode to reproduce its shape in the matching die plate, complete with the necessary clearance.文本仅供参考,感谢下载!文本仅供参考,感谢下载!。

    点击阅读更多内容
    卖家[上传人]:dajiefude
    资质:实名认证