当前位置首页 > 中学教育 > 初中课件
搜柄,搜必应! 快速导航 | 使用教程  [会员中心]

高中对数函数公式

文档格式:DOC| 5 页|大小 503.91KB|积分 15|2020-12-05 发布|文档ID:17789935
第1页
下载文档到电脑,查找使用更方便 还剩页未读,继续阅读>>
1 / 5
此文档下载收益归作者所有 下载文档
  • 版权提示
  • 文本预览
  • 常见问题
  • 指数函数和对数函数重点、难点: 重点:指数函数和对数函数的概念、图象和性质 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数在及两种不同情况 1、指数函数: 定义:函数叫指数函数 定义域为R,底数是常数,指数是自变量 为什么要求函数中的a必须 因为若时,,当时,函数值不存在 ,,当,函数值不存在 时,对一切x虽有意义,函数值恒为1,但的反函数不存在, 因为要求函数中的 1、对三个指数函数的图象的认识 图象特征与函数性质:图象特征函数性质(1)图象都位于x轴上方;(1)x取任何实数值时,都有;(2)图象都经过点(0,1);(2)无论a取任何正数,时,;(3)在第一象限内的纵坐标都大于1,在第二象限内的纵坐标都小于1,的图象正好相反; (3)当时, 当时,(4)的图象自左到右逐渐上升,的图象逐渐下降4)当时,是增函数,当时,是减函数 对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如和相交于,当时,的图象在的图象的上方,当,刚好相反,故有及 ②与的图象关于y轴对称 ③通过,,三个函数图象,可以画出任意一个函数()的示意图,如的图象,一定位于和两个图象的中间,且过点,从而也由关于y轴的对称性,可得的示意图,即通过有限个函数的图象进一步认识无限个函数的图象。

    2、对数: 定义:如果,那么数b就叫做以a为底的对数,记作(a是底数,N 是真数,是对数式 由于故中N必须大于0 当N为零的负数时对数不存在 (1)对数式与指数式的互化 由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如: 求 分析:对于初学者来说,对上述问题一般是束手无策,若将它写成,再改写为指数式就比较好办 解:设 评述:由对数式化为指数式可以解决问题,反之由指数式化为对数式也能解决问题,因此必须因题而异如求中的,化为对数式即成 (2)对数恒等式: 由 将(2)代入(1)得 运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和对数的底数相同 计算: 解:原式 (3)对数的性质: ①负数和零没有对数; ②1的对数是零; ③底数的对数等于1 (4)对数的运算法则: ① ② ③ ④ 3、对数函数: 定义:指数函数的反函数叫做对数函数 1、对三个对数函数的图象的认识图象特征与函数性质:图象特征函数性质(1)图象都位于 y轴右侧;(1)定义域:R+,值或:R;(2)图象都过点(1,0);(2)时,即;(3),当时,图象在x轴上方,当时,图象在x轴下方,与上述情况刚好相反;(3)当时,若,则,若,则;当时,若,则,若时,则;(4)从左向右图象是上升,而从左向右图象是下降。

    4)时,是增函数;时,是减函数对图象的进一步的认识(通过三个函数图象的相互关系的比较): (1)所有对数函数的图象都过点(1,0),但是与在点(1,0)曲线是交叉的,即当时,的图象在的图象上方;而时,的图象在的图象的下方,故有:; (2)的图象与的图象关于x 轴对称 (3)通过,,三个函数图象,可以作出任意一个对数函数的示意图,如作的图象,它一定位于和两个图象的中间,且过点(1,0),时,在的上方,而位于的下方,时,刚好相反,则对称性,可知的示意图 因而通过课本上的三个函数的图象进一步认识无限个函数的图象 4、对数换底公式: 由换底公式可得: 由换底公式推出一些常用的结论: (1) (2) (3) (4) 5、指数方程与对数方程* 定义:在指数里含有未知数的方程称指数方程 在对数符号后面含有未知数的方程称对数方程 由于指数运算及对数运算不是一般的代数运算,故指数方程对数方程不是代数方程而属于超越方程指数方程的题型与解法:名称题型解法基本型同底数型不同底数型需代换型取以a为底的对数取以a为底的对数取同底的对数化为换元令转化为的代数方程对数方程的题型与解法:名称题型解法基本题对数式转化为指数式同底数型转化为(必须验根)需代换型换元令转化为代数方程。

    点击阅读更多内容
    卖家[上传人]:maxianhui
    资质:实名认证