浙江镇海区八校2016-2017学年八年级上期末数学试卷含答案

班级____________ 姓名_______________ 学号________________―――――-――-――――――――――――――装――――――订――――――线――――――――――――――――――――――― 镇海区八校2016学年第一学期期末测试卷初二 数学一、精心选一选(每小题4分,共48分)1.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是( )A.1,2,1 B.1,2,3 C. 1,2,2 D.1,2,4第3题2.若a>b,则下列各式中一定成立的是( )A.ma>mb B.a2>b2 C.1-a>1-b D.b-a<0 3.如图,笑脸盖住的点的坐标可能为( )A.(5,2) B.(-2,3) C.(-4,-6) D.(3,-4)4.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是( )A.∠1=50°,∠2=40° B.∠1=50°,∠2=50°C.∠1=∠2=45° D.∠1=40°,∠2=40°5. 已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为( )A.30° B.50° C.80° D.100°6. 已知一个等腰三角形一底角的度数为80°.则这个等腰三角形顶角的度数为( ) A.20°B.70°C.80°D.100°7.直线y=-x-2不经过( )A.第一象限 B.第二象限 C.第三象限 D.第四象限8. 不等式x+2<6的正整数解有( ) A. 1个 B. 2个 C. 3 个 D. 4个9.小明到离家900米的三江超市买水果,从家中到超市走了20分钟,在超市购物用了10分钟,然后用15分钟返回家中,下列图形中表示小明离家的时间与距离之间的关系是( )ABCD 10. 下列命题:①有一个角为60°的等腰三角形是等边三角形;②等腰直角三角形一定是轴对称图形;③有一条直角边对应相等的两个直角三角形全等;④到线段两端距离相等的点在这条线段的垂直平分线上.正确的个数有( )A.4个 B.3个 C.2个 D.1个11.关于x的不等式组有四个整数解,则a的取值范围是 ( )A. B. C. D.12. 八个边长为1的正方形如图摆放在平面直角坐标系中,经过P点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为 ( )A. B. C. D. (12题图) (16题图) (17题图)二、细心填一填(每小题4分,共24分)13.函数y=中自变量x的取值范围是 _________ .14.在直角三角形中,一个锐角为57°,则另一个锐角为 _________ .15.一次函数y=(2k-5)x+2中,y随x的增大而减小,则k的取值范围是_____________16.如图,在△ABC中,AB=5,BC=12,AC=13,点D是AC的中点,则BD=__________.17.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是45cm2,AB=16cm,AC=14cm,则DE= .18.一块直角三角形绿地,两直角边长分别为3m,4m,现在要将绿地扩充成等腰三角形,且扩充时只能延长长为3m的直角边,则扩充后等腰三角形绿地的面积为 m2.三、认真解一解(8分+8分+8分+9分+9分+10分+12分+14分=78分)19. 解不等式组,并把解表示在数轴上.20. (8分)如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF(1)求证:△ABE≌△CBF;(2)若∠CAE=25°,求∠ACF的度数.21. (8分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A和点B在小正方形的顶点上.21·cn·jy·com(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个);(2)在图2中画出△ABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个).22、(9分)已知y是x的一次函数,且当x=-4时,y=9;当x=6时,y=-1.(1)求这个一次函数的解析式;(2)当x=-时,函数y的值;(3)当y<1时,自变量x取值范围.23. (9分)如图,AB∥CD,CE平分∠ACD交AB于E点.(1)求证:△ACE是等腰三角形;(2)若AC=13cm,CE=24cm,求△ACE的面积.24.(10分)随着春节临近,节日礼品开始热销,某厂每月固定生产甲、乙两种礼品共100万件,甲礼品每件成本15元,乙礼品每件成本12元,现甲礼品每件售价22元,乙礼品每件售价18元,且都能全部售出.(1)若某月甲礼品的产量为x万件,总利润为y万元,写出y关于x的函数关系式.(2)如果每月投入的总成本不超过1380万元,应怎样安排甲、乙礼品的产量,可使所获得的利润最大?25(12分)在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:【版权所有:21教育】若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P1(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).21教育名师原创作品(1)已知点A(﹣),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)如图2,已知C是直线上的一个动点,点D的坐标是(0,1),求点C与点D的“非常距离”最小时,相应的点C的坐标.21*cnjy*com26. (14分)如图,A(0,4)是直角坐标系y轴上一点,动点P从原点O出发,沿x轴正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.(1)若AB∥x轴,求t的值;(2)当t=3时,坐标平面内有一点M,使得以M、P、B为顶点的三角形和△ABP全等,请直接写出点M的坐标; (3)设点A关于x轴的对称点为,连接,在点P运动的过程中,∠的度数是否会发生变化,若不变,请求出∠的度数,若改变,请说明理由。
镇海区八校2016学年第一学期期末作业检测初二 数学一、精心选一选(本大题有12个小题,每小题4分,共48分)123456CDBCB A789101112AC DBBB二、细心填一填(本大题有6个小题,每小题4分,共24分)13. _ 14. ___ 33° _ 15. __________ . 16. 6.5 _ 17. _3 _ 18. 8或10或12或(写对一个得1分) 三、认真解一解(8分+8分+8分+9分+9分+10分+12分+14分=78分)19. 解:解不等式(1),得, 2分 解不等式(2),得x<3 4分 在数轴上表示不等式(1)、(2)的解集为: 6分∴不等式组的解集为: 8分20.解:21. 解:(1)如图1,①、②,画一个即可;-- 4分(2)如图2,①、②,画一个即可. 4分21.解:解:(1)在Rt△ABE与Rt△CBF中,,∴△ABE≌△CBF(HL). 4分(2)∵△ABE≌△CBF,∴∠BAE=∠BCF=25°;∵AB=BC,∠ABC=90°,∴∠ACB=45°, ∴∠ACF=70°. 8分22. 23.(1)证明:如图,∵AB∥CD,∴∠AEC=∠DCE,又∵CE平分∠ACD,∴∠ACE=∠DCE,∴∠AEC=∠ACE,∴△ACE为等腰三角形. ------------------- 4分 (2)过A作AG⊥CE,垂足为G;∵AC=AE,∴CG=EG=CE=12(cm);∵AC=13(cm),由勾股定理得,AG=5(cm); ------------------- 7分∴S△ACE=×24×5=60(cm2). -------------------9分 24. (1) ———4分 (2)≤ ———6分 ≤60———8分 y随x的增大而增大,当x=60时,y最大. 此时生产甲礼品60件,乙礼品40件.——10分25. (1)①∵B为y轴上的一个动点,∴设点B的坐标为(0,y).∵|﹣﹣0|=≠2,∴|0﹣y|=2,解得,y=2或y=﹣2;∴点B的坐标是(0,2)或(0,﹣2);------------------------4分②设点B的坐标为(0,y).∵|﹣﹣0|≥|0﹣y|,∴点A与点B的“非常距离”最小值为|﹣﹣0|=; ------------------------6分(2)如图2,取点C与点D的“非常距离”的最小值时,需要根据运算定义“若|x1﹣x2|≥|y1﹣y2|,21教育网则点P1与点P2的“非常距离”为|x1﹣x2|”解答,此时|x1﹣x2|=|y1﹣y2|.即AC=AD, ------------------------8分∵C是直线y=x+3上的一个动点,点D的坐标是(0,1),∴设点C的坐标为(x0,x0+3),∴﹣x0=x0+2, ------------------------10分此时,x0=﹣,∴点C与点D的“非常距离”的最小值为:|x0|=,此时C(﹣,). ------------------------12分26. 解:(1)过点B作BC⊥x轴于点C,如图1所示.∵AO⊥x轴,BC⊥x轴,且AB∥x轴,∴四边形ABCO为长方形,∴AO=BC=4.∵△APB为等腰直角三角形,∴AP=BP,∠PAB=∠PBA=45°,∴∠OAP=90°﹣∠PAB=45°,∴△AOP为等腰直角三角形,∴OA=OP=4.t=4÷1=4(秒),故t的值为4. ------------------------4分(2)点M的坐标为(4,7), (6,-4), (10,-1), (0,4)-----------------------8分(3)答:∠=45° ------------------------10分∵△APB为等腰直角三角形,∴∠APO+∠BPC=180°﹣90°=90°.又∵∠PAO+∠APO=90°,∴∠PAO=∠BPC.在△PAO和△BPC中,,∴△PAO≌△BPC,∴AO=PC,BC=PO.∵点A(0,4),点P(t,0)∴PC=AO=4,BC=PO=t,CO=PC+PO=4+ t∴点B(4+t,t) ------------------------12分∴点B在直线y=x﹣4上 又∵点A关于x轴的对称点为(0,-4)也在直线y=x﹣4上,∴∠=45° -----------------14分。